

View

Online


Export
Citation

RESEARCH ARTICLE |  MAY 22 2024

Control of seizure-like dynamics in neuronal populations
with excitability adaptation related to ketogenic diet 
Special Collection: Regime switching in coupled nonlinear systems: sources, prediction, and control

Sebastian Eydam   ; Igor Franović  ; Louis Kang 

Chaos 34, 053128 (2024)
https://doi.org/10.1063/5.0180954

 28 June 2024 05:00:50

https://pubs.aip.org/aip/cha/article/34/5/053128/3294348/Control-of-seizure-like-dynamics-in-neuronal
https://pubs.aip.org/aip/cha/article/34/5/053128/3294348/Control-of-seizure-like-dynamics-in-neuronal?pdfCoverIconEvent=cite
https://pubs.aip.org/cha/collection/1220/Regime-switching-in-coupled-nonlinear-systems
javascript:;
https://orcid.org/0000-0001-6132-3055
javascript:;
https://orcid.org/0000-0002-0735-2709
javascript:;
https://orcid.org/0000-0002-5702-2740
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0180954&domain=pdf&date_stamp=2024-05-22
https://doi.org/10.1063/5.0180954
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2418537&setID=592934&channelID=0&CID=887121&banID=521922512&PID=0&textadID=0&tc=1&rnd=2235584058&scheduleID=2337186&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fcha%22%5D&mt=1719550850139841&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fcha%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0180954%2F19960964%2F053128_1_5.0180954.pdf&hc=babd93c7e6f883667c6939034f66369e982fcf60&location=


Chaos ARTICLE pubs.aip.org/aip/cha

Control of seizure-like dynamics in neuronal
populations with excitability adaptation related
to ketogenic diet

Cite as: Chaos 34, 053128 (2024); doi: 10.1063/5.0180954

Submitted: 13 October 2023 · Accepted: 6 May 2024 ·
Published Online: 22May 2024 View Online Export Citation CrossMark

Sebastian Eydam,1,a) Igor Franović,2,b) and Louis Kang1,c)
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ABSTRACT

We consider a heterogeneous, globally coupled population of excitatory quadratic integrate-and-fire neurons with excitability adaptation due
to a metabolic feedback associated with ketogenic diet, a form of therapy for epilepsy. Bifurcation analysis of a three-dimensional mean-field
system derived in the framework of next-generation neural mass models allows us to explain the scenarios and suggest control strategies
for the transitions between the neurophysiologically desired asynchronous states and the synchronous, seizure-like states featuring collective
oscillations. We reveal two qualitatively different scenarios for the onset of synchrony. For weaker couplings, a bistability region between
the lower- and the higher-activity asynchronous states unfolds from the cusp point, and the collective oscillations emerge via a supercrit-
ical Hopf bifurcation. For stronger couplings, one finds seven co-dimension two bifurcation points, including pairs of Bogdanov–Takens
and generalized Hopf points, such that both lower- and higher-activity asynchronous states undergo transitions to collective oscillations,
with hysteresis and jump-like behavior observed in vicinity of subcritical Hopf bifurcations. We demonstrate three control mechanisms for
switching between asynchronous and synchronous states, involving parametric perturbation of the adenosine triphosphate (ATP) production
rate, external stimulation currents, or pulse-like ATP shocks, and indicate a potential therapeutic advantage of hysteretic scenarios.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0180954

Adaptation has a profound impact on the dynamics of cou-
pled systems across a wide variety of fields. In neuronal sys-
tems, it has two facets: one associated with synaptic plasticity
and the other related to modification of local kinetics, such as
the spiking frequency or the excitability feature. Here, we intro-
duce a model of excitability adaptation reflecting the changes
in neuronal metabolism linked to the ketogenic diet, a dietary
treatment for epilepsy based on replacing carbohydrates with
fat. The diet induces a shift in the main mechanism of ATP
production, which in turn leads to activation of ATP-gated
potassium channels in neuronal membranes. We build a model
of a heterogeneous, globally coupled population of inherently
excitable or tonic spiking excitatory quadratic integrate-and-fire

neurons influenced by an ATP-dependent hyperpolarizing cur-
rent, endowed by an additional equation describing the changes
in the total ATP concentration. The stability of solutions and
their bifurcations are investigated by analyzing the correspond-
ing mean-field model via the numerical path-following technique.
We disclose qualitatively different scenarios of multistability and
bifurcations depending on the coupling strength. Interpreting the
low-activity asynchronous stationary state as the physiologically
desired (homeostatic) one, and the emergence of synchronous
solutions featuring collective oscillations as the signature of
seizure-like events, we demonstrate three control strategies to
suppress the seizure dynamics by inducing a switch to the homeo-
static state. Interestingly, such switches may be triggered by the
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changes in the ATP production rate, as a form of parametric
perturbation, both for smooth or hysteretic transitions between
synchronous and asynchronous states.

I. INTRODUCTION

The recent advent of the next-generation neural mass (NGNM)
models1–5 has allowed for a deeper understanding of multistability
and critical transitions in the dynamics of neuronal populations,
and has provided us with the means to systematically explore the
control strategies for switching between the states interpreted in
terms of neurophysiology as regular or pathological ones. Earlier
phenomenological neural mass models6–8 described the dynamics
of neuronal populations in terms of firing rate equations, typically
assuming a sigmoid-like transfer function between the mean mem-
brane potential and the mean firing rate. Such models relied on
the assumption of uncorrelated local dynamics and could neither
capture the scenarios where the state of synchrony undergoes quali-
tative change nor establish an exact relationship between the features
of local and collective dynamics. These issues have been resolved
in the NGNM models, based on applying the Ott–Antonsen9–11

or the equivalent Lorentzian Ansatz1 to populations of theta neu-
rons and quadratic integrate-and-fire neurons, respectively. NGNM
models characterize population dynamics in terms of mean-field
equations for the mean firing rate and the mean membrane poten-
tial. While the notion of spike synchrony, classically invoked in
neuroscience, is reflected in oscillations of the mean firing rate,12

the NGNM framework further establishes a relation between the
mean firing rate and the population synchrony described by the
complex Kuramoto order parameter, a synchrony measure inherited
from the theory of coupled phase oscillators.1,4 NGNM models have
the advantage of being exact in the thermodynamic limit and are
amenable to bifurcation analysis. So far, NGNM models have been
used to address a broad range of theoretical problems, including
understanding the impact and interplay of chemical and electri-
cal synapses,13–15 the effects of deterministic or stochastic drive,16–20

presence of quenched randomness in network topology,21 finite-size
fluctuations,22,23 interaction of neuronal populations,24–26 as well as
formation of bumps and waves in neural fields.27–29 Moreover, a wide
spectrum of applications has been considered from explaining the
onset of gamma and theta-nested gamma oscillations,12,30–33 cross-
frequency couplings,34 abnormal beta rebound in schizophrenia,35

the impact of deep brain stimulation,36 to studies on working
memory,25,37 propagation of epileptic seizures,38 and modeling of the
entire brain functional networks.4

A corpus of problems that have so far been less explored within
the formalism of NGNM models concerns the impact of neuronal
adaptation.37,39–41 In general, neuronal systems feature two broad
types of adaptive behavior.42 The first is synaptic plasticity,43,44 which
involves modification of coupling strengths due to feedback with
neuronal activity. The other type comprises adaptation of local
kinetics, including spike frequency adaptation41,45,46 or changes in
neuronal excitability due to metabolic constraints.47–49 Our study
addresses the latter problem. In particular, we use the NGNM frame-
work to investigate how the population dynamics is affected by the
excitability adaptation due to a severe change of neuronal energy

metabolism triggered by the ketogenic diet (KD).50–55 Constructing
the bifurcation diagrams to reveal critical transitions and regions of
multistability, we demonstrate different control strategies that may
be used to induce switches between asynchronous (“homeostatic,”
i.e., neurophysiologically desired equilibrium states with low firing
rates) and synchronous, seizure-like regimes.

Within recent years, there has been a growing interest in
the impact of energy metabolism constraints, both on main-
taining neuronal homeostasis and the emergence of neurological
disorders.49,56–58 The neuronal energy demand is typically high even
in the resting state because it requires maintaining ion fluxes against
concentration and electric gradients.48 Such ion fluxes are mainly
perpetuated by the Na+/K+ pump which consumes energy in the
form of ATP,59,60 produced in the glycolysis process unfolding
close to the neuronal membrane. It has long been understood that
some neurological disorders, such as epilepsy47,61–63 or Parkinson’s
disease,64,65 involve a strong metabolic component. Epilepsy is the
third most prevalent neurological disorder66,67 and is characterized
by recurring seizures. Despite the advanced anti-convulsive med-
ications, about a third of patients still remain drug-resistant and
require alternative therapies.67 Among the latter, KD,50,52–55 whose
origins date back to the 1920s, is nowadays often recommended to
children with pharmacology-resistant seizures.68 KD is based on a
4:1 intake ratio of fat vs carbohydrates plus proteins, which gives
rise to a drastic metabolic change called ketosis. In the state of
ketosis, the glycolytic ATP production reduces, becoming effectively
replaced by an alternative oxidation mechanism in mitochondria,
fueled by the ketone bodies generated in the liver using diet-related
fatty acids. The KD’s effectiveness apparently derives from leverag-
ing anti-convulsive mechanisms that are not (sufficiently) targeted
by medications.50

KD is believed to induce two different anti-seizure types of
effects:50 one concerns a direct impact of ketone bodies to inhi-
bition of excitatory synaptic channels and the other is related
to the metabolic switch from glycolytic to mitochondria-based
ATP production. Our study focuses on the latter group of effects,
whose schematic is provided in Fig. 1. In brief, abolishing the
glycolytic ATP production results in the depletion of ATP in a
near-membrane region, which causes activation of ATP-sensitive
potassium channels in the membrane. Their activation has long
been known to induce hyperpolarizing currents that reduce neu-
ronal excitability.69–71 Our approach involves a model of local neu-
ronal dynamics supplied with the hyperpolarizing current associated
with ATP-gated potassium channels, as well as the ATP dynamics
describing its production and utilization.

The paper is organized as follows. In Sec. II, we introduce the
model of a globally coupled heterogeneous population of intrin-
sically excitable or tonic spiking excitatory quadratic integrate-
and-fire neurons supplied by the individual terms for the ATP-
dependent hyperpolarizing currents and an equation for the global
dynamics of ATP concentration. Using the approach from Ref. 1,
in Sec. III, we derive the corresponding mean-field model, which
compared to the classical results, contains additional dependen-
cies of the mean firing rate and mean membrane potential on the
ATP concentration level. Section IV provides the bifurcation anal-
ysis of the reduced system, revealing two qualitatively different
bifurcation scenarios in terms of transitions to synchrony and
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FIG. 1. Schematic of the excitability adaptation associated with the changes in
the energy metabolism due to ketogenic diet. The diet causes the main mecha-
nism of ATP production to switch from sub-membrane glycolysis to an oxidation
process in mitochondria. In parallel, activation of the ATP-gated potassium chan-
nels in the neuronal membrane gives rise to an ATP-dependent hyperpolarizing
current. ATP balance is further influenced by consumption due to maintaining the
resting potential and enabling spiking.

the system’s multistability depending on the coupling strength.
In Sec. V, we demonstrate mechanisms for controlled switching
between the homeostatic and seizure-like states, including exter-
nal stimulation, parametric and dynamical perturbation. Section VI
provides a summary and discussion of our results.

II. MODEL OF MICROSCOPIC DYNAMICS

We consider a large heterogeneous population of synaptically
coupled excitatory quadratic integrate-and-fire neurons72,73 whose
dynamics is given by

V̇j = V2
j + ηj + KS(t) + IATP

j (t) + Iext(t),

IATP
j (t) = −αVj(t)

C̃

C(t)
,

(1)

where Vj for j = {1, . . . , N}, N � 1 are the neuronal membrane
potentials. The population diversity is manifested through het-
erogeneity of local bifurcation parameters ηj, which follow the
Lorentzian density distribution

g(η) =
1

π

1

(η − η̄)2 + 12
(2)

and may in terms of neurophysiology be interpreted as heteroge-
neous components of external bias current. Quadratic integrate-
and-fire neurons are paradigmatic for type I excitability such that an
isolated unit undergoes a transition from excitable regime (ηj . 0)
to tonic spiking (ηj > 0) with a frequency fj = √

ηj/π via a SNIPER
(saddle node of infinite period) bifurcation at ηj = 0. A neuron fires

a spike whenever its membrane potential reaches the peak value Vp,
after which it is reset to −Vr. To allow for subsequent analytical
tractability, we set Vp = −Vr = ∞.

The terms Iext(t) and KS(t) describe a common external stim-
ulation and the total synaptic current, respectively. The chemical
synapses are characterized by a uniform coupling strength K and are
assumed to be instantaneous such that the mean synaptic activity is
given by the normalized output signal of the population,

S(t) =
1

N

N
∑

j=1

∑

k\tkj ≤t

δ

(

t − tk
j

)

, (3)

where tk
j is the time of the kth spike of neuron j.

The excitability adaptation triggered by the changes in the
energy metabolism due to the ketogenic diet is mediated by the ATP-
dependent hyperpolarizing currents IATP

j , which may be regarded as
an effective parametric perturbation to the local bifurcation param-
eters ηj. The hyperpolarizing currents reflect the action of the ATP-
gated potassium channels in neuronal membranes activated by the
diet50,69,74–76 and are assumed to have a uniform conductance α. Note
that the gating of the potassium channels is in fact a complex pro-
cess governed by the exchange of sodium and ATP.70,71 Nevertheless,
for simplicity, here we adopt the model for IATP

j from Ref. 69 which
omits the detailed equation for the sodium dynamics. To close the
system (1), one requires an additional equation for the dynamics of
ATP concentration C(t),

Ċ =
C̃ − C

τ
−

ε S(t) C

C̃
, (4)

where C̃ denotes the maximal ATP concentration. The first term
in the r.h.s. accounts for the ATP production with a characteristic
timescale τ , whereas the second term describes the consumption of
ATP due to spiking, with ε being the amount of ATP consumed
per each spike.69 The consumption part is assumed to be propor-
tional to the ATP concentration to keep the concentration from
becoming negative. In a notable contrast to Ref. 69, the dynamics
of ATP concentration is introduced via a global variable rather than
the set of microscopic variables that depend on the spike trains of
individual neurons. Adopting such an approach facilitates the sub-
sequent derivation of the mean-field model. Systems (1) and (4)
provide a complete description of a heterogeneous population of
quadratic integrate-and-fire neurons subjected to excitability adap-
tation reflecting the metabolic feedback associated with ketogenic
diet.

The difficulties with numerically simulating the reset of mem-
brane potentials in system (1) are resolved in the standard way
by performing simulations of an equivalent model of a popula-
tion of theta neurons,13,24 obtained by the change of variables Vj

= tan(θj/2)77,78 in system (1). The phase dynamics of theta neurons
then reads

θ̇j = (1 − cos θj) + (1 + cos θj)(ηj + KS(t) + Iext(t)) − α
C̃

C(t)
sin θj,

(5)

which should be complemented with Eq. (4) for the dynamics of
ATP concentration. The spiking events from representation (1)
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just correspond to the phase variables’ crossing the π value. The
Lorentzian distribution of local bifurcation parameters ηj is gen-

erated deterministically via ηj = η̄ + 1 tan
(

(π/2) 2j−N−1
N+1

)

.13 The

numerical simulations of the model (4) and (5) are carried out for
the fixed parameter set 1 = 1.0, α = 1.0, ε = 1.0, C̃ = 1.0, N = 104

and varying η̄, K, and τ . While η̄ and K, respectively, characterize
the intrinsic population dynamics and the impact of interactions in
modifying the local dynamics, τ may be seen as the main parameter
that describes the metabolic changes associated with the ketogenic
diet, consistent with both in vivo and in vitro findings that the
diet affects the ATP production capacity.50,79–83 For numerical inte-
gration of the model (5) and (4), we use an error-controlled 5/4
Runge-Kutta scheme called Tsit5 implemented in the Julia package
DifferentialEquations.jl.84 During the simulation, the impact of the
spikes and the ATP consumption are handled separately. In partic-
ular, we determine S(t) by counting the number of spikes within a
given time step and then apply changes to the phases and the ATP
concentration according to θj(t)

+ = θj(t)
− + (1 + cos(θj(t)

−))KS(t)

and C(t)+ = C(t)− − S(t)εC(t)−/C̃, where the superscripts − and +
denote the values before and after the impact of the spikes, respec-
tively. In a subsequent comparison with the mean-field model, we
present the mean firing rate of the population of theta neurons
as a time-smoothed signal of S(t) using a rectangular convolution
function with the time width 0.1, similar to.13

III. MEAN-FIELD SYSTEM

Applying the general reduction approach from Ref. 1 to micro-
scopic models (1)–(4), in this section we derive the mean-field
system describing the collective behavior of a neuronal popula-
tion affected by the excitability adaptation reflecting the metabolic
changes related to ketogenic diet. In the thermodynamic limit
N → ∞, the population state can be characterized by the condi-
tional density function ρ(V|η, t) such that ρ(V|η, t)dV gives the
fraction of neurons with membrane potential within the interval
(V, V + dV) and local bifurcation parameter η at time t. The density
function satisfies the continuity equation,

∂

∂t
ρ = −

∂

∂V

[

ρ

{

V2 + η + KS + Iext − αV
C̃

C

}]

. (6)

According to the Lorentzian Ansatz,1,13,85 connected to the
Ott–Antonsen Ansatz via a conformal mapping,1 the solutions of (6)
generically converge to a Lorentzian distribution,19

ρ(V|η, t) =
1

π

x(η, t)
[

V − y(η, t)
]2 + x(η, t)2

, (7)

where the time-dependent parameters x(η, t) and y(η, t) capture the
macroscopic dynamics in a reduced subspace. In particular, the local
firing rate r(η, t) for a fixed η is given by the probability flux through
the infinity threshold r(η, t) = ρ(V → ∞|η, t)V̇(V → ∞|η, t). This
yields the relation to the Lorentzian half-width x(η, t) = πr(η, t)
such that the population total firing rate satisfies1

r(t) =
1

π

∫ +∞

−∞
x(η, t)g(η)dη. (8)

Similarly, the mean membrane potential is given by

v(t) =
∫ +∞

−∞
y(η, t)g(η)dη. (9)

Introducing the complex variable w(η, t) = x(η, t) + iy(η, t)
and substituting the Lorentzian Ansatz (7) into the continuity
equation leads to

ẇ(η, t) = i
(

η + Kr(t) − w(η, t)2 + Iext(t)
)

−
C̃αw(η, t)

C(t)
, (10)

where the total output of the finite population S(t) is replaced with
the mean rate r(t), the population’s output in the thermodynamic
limit. The infinite set of integro-differential equations (10) holds
for arbitrary choice of the diversity distribution. Nevertheless, the
particular choice of Lorentzian distribution (2) allows for the max-
imal reduction of (10) by solving the integrals over η in Eqs. (8)
and (9) via the residue theorem.1,13–15,24 By analytically continuing
η into the complex plane and closing the integration contour over
the half-plane Im(η) < 0, one readily finds that the integrals in
definitions (8) and (9) only depend on the value of w at the pole
η = η̄ − i1 of the g(η) diversity distribution, yielding the relation
πr(t) + iv(t) = w(η̄ − i1, t). Evaluating Eq. (10) at η = η̄ − i1 and
recalling Eq. (4), one arrives at the mean-field model describing
the macroscopic dynamics of the population in terms of the mean
firing rate r(t), mean membrane potential v(t) and the total ATP
concentration C(t),

ṙ = 1/π + (2v − αC̃/C)r,

v̇ = η̄ − π 2r2 + v2 + Kr − αvC̃/C + Iext(t),

Ċ =
C̃ − C

τ
−

ε r C

C̃
.

(11)

Note that system (11) is expected to feature a certain separation
of timescales, since the ATP production, characterized by the rate
1/τ , should take place on a timescale slower than that of the local
neuronal dynamics. Nevertheless, there is no reason to a priori
assume a strong separation of timescales 1/τ � 1, so in the follow-
ing, we consider τ as a free control parameter. One should, however,
bear in mind that the slow–fast decomposition within the NGNM
framework has so far provided important insights concerning the
onset of collective bursting in neuronal populations with short-term
plasticity86 and the mechanism behind emergent excitability.87

By carrying out the stability and bifurcation analysis of the
mean-field model (11), in Sec. IV, we demonstrate how the classi-
cal physical picture from Ref. 1 qualitatively changes in the presence
of excitability adaptation associated with ketogenic diet.

IV. BIFURCATION ANALYSIS OF THE MEAN-FIELD

MODEL

The stability of equilibria of the macroscopic system (11) and
their bifurcations are analyzed by the numerical path-following
technique using the software package BifurcationKit.88 The bifurca-
tion diagrams are presented in the (η̄, τ) parameter plane keeping
the remaining parameters fixed. The structure of the bifurcation
diagrams qualitatively depends on the coupling strength K, with
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FIG. 2. Stability and bifurcations of equilibria of (11) in the (η̄, τ)-plane for coupling strengths K = 10 and K = 15 in (a) and (b), respectively. Shading in different colors,
cf. the colorbar, indicates the type of equilibrium (stable node, stable focus, saddle focus, and saddle node) obtained by simulating (11) from random initial conditions. Bullets
denote co-dimension two bifurcations: Bogdanov–Takens (BT), cusp (CP), and generalized Hopf (GH). Lines indicate Hopf (HB) and saddle-node (SN) bifurcation curves
(supercritical HB – solid blue lines, subcritical HB – dashed blue lines). Other symbols (star, triangle, diamond), respectively, indicate parameter sets in Fig. 3 and 6– 8.

Remaining parameters are 1 = 1.0, ε = 1.0,α = 1.0, C̃ = 1.0.

the physical picture gaining complexity for larger K. To illustrate
this, we provide two examples of bifurcation diagrams, namely, for
K = 10 in Fig. 2(a) and K = 15 in Fig. 2(b). On top of the bifurca-
tion diagrams are overlaid the fixed-point solutions of (11) obtained
numerically starting from random initial conditions. The classifi-
cation of macroscopic equilibria is indicated by the color-coding
scheme. One finds four different types of equilibria, including two
stable ones (stable node and stable focus) and two unstable ones
(saddle and saddle focus).

The bifurcation diagram for K = 10 in Fig. 2(a) features two
types of stable equilibria, namely, a stable node and a stable focus.
The microscopic structure of these states involves asynchronous
dynamics and is qualitatively the same for arbitrary K, see the
example in Figs. 3(a)–3(d) which show the asymptotic dynamics
of r(t), v(t), C(t), and the corresponding spike raster plot for the
corresponding microscopic model (5), respectively. From Eq. (6),
it follows that for an equilibrium (r, v, C) = (r∗, v∗, C∗), the pop-
ulation is divided into two parts: an excitable (non-spiking) sub-

population for η <

(

αC̃
2C∗

)2
− Kr∗, characterized by the density dis-

tribution ρ(V|η) = δ

(

V −
(

αC̃
2C∗ −

√

αC̃
2C∗

2
− (η + Kr∗)

))

, and a

spiking subpopulation η ≥
(

αC̃
2C∗

)2
− Kr∗ with a Lorentzian-shaped

density distribution ρ(V|η) =
√

η+Kr∗−(αC̃/2C∗)
2

π

(

(V−αC̃/(2C∗))
2+η+Kr∗−(αC̃/2C∗)

2
) .

The two asynchronous states coexist within a small wedge-
shaped region of bistability organized around a co-dimension two

cusp point (CP), where two branches of saddle-node bifurcations
(SN) meet. Within that region, the stable node (focus) corre-
sponds to the lower (higher)-activity state. Outside of the bista-
bility domain, the mean rate of the nodal equilibrium remains
generally low, whereas the focus equilibrium corresponds to the
higher-activity state r∗ > 0.3 for sufficiently small τ . From the neu-
roscience perspective, the lower-activity state indicates the normal,
i.e., homeostatic activity of the population. The saddle-node curves
for smaller (larger) η̄ describe the disappearance of the higher-
activity (lower-activity) state.

In contrast to the classical result for an all-to-all synapti-
cally coupled population of quadratic integrate-and-fire neurons1

in the presence of excitability adaptation, one finds a transition
to synchrony mediated by the supercritical Hopf bifurcation (HB),
which destabilizes the higher-activity state, cf. the boundaries of the
green region in Fig. 2(a). However, unlike the scenario in mixed
populations of excitable units and oscillators with a Kuramoto-
type coupling,89 the branch of Hopf bifurcations does not emanate
from a Bogdanov–Takens point. Sufficiently above the Hopf bifur-
cation, the local dynamics of the synchronous state consists of
synchronous population bursts. Within the macroscopic oscillation
cycle, one observes an accumulation of synchrony where more units
are recruited to emit synchronous spikes as the maxima of r(t) and
v(t) are approached, see the example in Figs. 3(e)–3(h). In the neuro-
science context, the states with an increased level of synchrony, such
as this one, may be interpreted as describing seizure-like dynamics.
In particular, in our model, each maximal synchronous burst can be
associated with a seizure event. Note that for decreasing adaptation
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FIG. 3. Comparison between themean-field model (11) (dashed lines) andmicro-
scopic (solid lines) system (5) in terms of r(t), v(t), and C(t) show a good
agreement, as well as spike raster plots obtained by simulating the microscopic
system, for example, of an asynchronous state [(a)–(d)] and synchronous state
[(e)–(h)]. The two states, corresponding to a stable focus and a stable limit cycle
of system (11), coexist for τ = 8.15, η̄ = −1.6 and K = 15 [star in Fig. 2(b)].

Remaining parameters: N = 104, 1 = ε = α = C̃ = 1.0.

rate (increasing τ ), one finds a reentrant transition to asynchronous
state, in the sense that for higher τ at fixed η̄, the focus equilibrium
regains stability via an inverse supercritical Hopf bifurcation.

The physical picture substantially changes for a larger cou-
pling strength K = 15, see Fig. 2(b). In particular, the bifurcation
diagram is organized around seven co-dimension two bifurcation
points, including a cusp and pairs of Bogdanov–Takens points (BT),
generalized Hopf (GH) bifurcations, and fold-homoclinic points
(not shown). The most important novelty is that in the presence of
excitability adaptation and for sufficiently large K, both the lower-
activity and the higher-activity asynchronous state may undergo a
transition to synchrony. In contrast to Fig. 2(a), these transitions
are associated with branches of Hopf bifurcation curves emanat-
ing from the Bogdanov–Takens points. Unlike the classical scenario
described in Refs. 13 and 34, the Hopf curves exhibit a change of
criticality in generalized Hopf (Bautin) points, turning from subcrit-
ical to supercritical. From the GH points derive curves of folds of
limit cycles, which are not explicitly shown due to additional struc-
tures associated with them. Nevertheless, for both GH points, we
have been able to numerically corroborate the coexistence between
the respective stable equilibrium and the stable limit cycle just
above the subcritical Hopf bifurcations. In the neuroscience context,
the coexistence between asynchronous and synchronous states has

interesting implications in the context of potential control of seizure
dynamics, as elaborated in Sec. V.

Within the wedge-shaped region organized around the CP, the
bistability domains between asynchronous and synchronous states
are confined by the branches of homoclinic bifurcations. There, the
limit cycles derived from HBs associated with the BTs vanish. Nev-
ertheless, the homoclinic bifurcation curves are not shown to avoid
overburdening an already complicated bifurcation diagram. We just
mention that the homoclinic bifurcation curve associated with the
disappearance of the limit cycle born from the destabilization of the
higher-activity asynchronous state extends toward the right curve of
saddle-nodes for smaller τ . On the other hand, the homoclinic bifur-
cation associated with the vanishing of the limit cycle derived from
the destabilization of the lower-activity asynchronous state remains
close to the cusp point, terminating at a fold-homoclinic point on the
left branch of the saddle-nodes near the CP. Apart from inside the
wedge-shaped region, bistability between asynchronous and syn-
chronous states is also found immediately above the right (higher
η̄) branch of subcritical Hopf bifurcations, cf. the right dashed line
in Fig. 2(b).

We believe that the qualitative change of the bifurcation dia-
gram observed for varying K is due to the system being close to a
co-dimension three bifurcation point. In particular, we suspect that
for increasing K, there is a scenario of unfolding of a degenerate BT
bifurcation, after which the supercritical Hopf curve and the bista-
bility tongue detach from each other. Consequently, there should
exist a critical coupling strength, where the two BT points coincide
and subsequently disappear.

In Sec. V, we demonstrate the different strategies that may be
applied to induce controlled switches between the seizure-like and
homeostatic dynamical regimes.

V. CONTROL OF SWITCHING DYNAMICS

Developing control strategies to suppress the seizure-like states
and promote the homeostatic ones is of fundamental importance to
potential applications in neuroscience. In Sec. IV, we have shown
that the presence of excitability adaptation associated with the
metabolic changes triggered by ketogenic diet qualitatively enriches
the bifurcation diagram compared to the classical scenarios1,13 where
such adaptation mechanism is absent. This naturally raises the ques-
tion of whether the diet-related emergent dynamics may facilitate
new means to promote the lower-activity asynchronous states at the
expense of regimes featuring excessive synchrony.

It turns out that there are indeed several control strategies avail-
able to induce the desired regime switches. These strategies may be
cast into two groups: one associated with inducing critical transi-
tions and the other related to triggering switches between coexisting
states away from criticality. In particular, a supercritical or a sub-
critical (hysteretic) transition may be induced by the parametric
perturbation of the ATP production rate, i.e., the production time
constant τ . On the other hand, within the domains supporting bista-
bility between the synchronous and asynchronous states, one may
introduce an external stimulation current or apply a dynamic per-
turbation to ATP concentration level to induce the desired switch of
states.

Chaos 34, 053128 (2024); doi: 10.1063/5.0180954 34, 053128-6

Published under an exclusive license by AIP Publishing

 28 June 2024 05:00:50

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

Let us first consider the scenarios concerning the variation
of ATP production rate. For lower K, the bifurcation diagram in
Fig. 2(a) features a confined synchrony domain (green region)
bounded by a reentrant transition to the asynchronous state. In the
context of neuroscience, the fact that the transition is mediated by
the supercritical Hopf bifurcation implies less sharp onset or termi-
nation of seizure-like states. In order to induce a critical transition
from synchrony to the asynchronous state, one is required to sys-
tematically increase τ , i.e., decrease the ATP production rate, which
could in principle be achieved by modulating any number of steps
along the metabolic pathway, including the carbohydrate source via
the ketogenic diet. Nevertheless, given the reentrant character of the
transition, the same effect can be achieved by appropriately reducing
τ . In terms of neurophysiology, the former method is still preferred,
because the mean rate of the asynchronous state decreases with
τ , taking rather low values r∗ ≈ 0.2 immediately above the state’s
reappearance.

For the case of stronger couplings from Fig. 2(b), varying τ

may induce a hysteretic transition in the vicinity of subcritical Hopf
bifurcations associated with the destabilization of the lower- or the
higher-activity asynchronous state. As an example, let us focus on
the case of subcritical Hopf bifurcation controlled by reducing τ

for fixed K = 15 and η̄ = −1.6. Slightly above the bifurcation, the
mean-field system features bistability between the focus equilib-
rium and the limit cycle illustrated in Fig. 3 for τ = 8.15, whereas
below the bifurcation, the limit cycle remains the system’s only
attractor. In Fig. 4, it is demonstrated how sudden shifts in τ

may induce a hysteretic transition between the asynchronous and
synchronous states. In the context of neuroscience, a hysteretic tran-
sition between the homeostatic and seizure-like states implies the
possibility of a strong jump in the signal amplitude for the seizure
onset or termination. Note that a strong jump associated with the
hysteretic transition in general implies irreversibility, in the sense
that once the jump has occurred, a small reverse of the parame-
ter value cannot induce the transition back to the initial state. In
terms of controlling the seizure-like activity, such irreversibility may
be favorable because the metabolic interventions that recover the
homeostatic state could be persistent and have a lasting therapeutic
effect.

The parametric perturbation of the ATP production rate, or
rather the ATP production time constant τ , is introduced as fol-
lows. Starting from the asynchronous state, a sudden decrease of
τ to the value τ = 7.65 below the subcritical Hopf bifurcation at
τ = τHB, cf. the dashed line in Fig. 4(a), triggers the switch to
the synchronous state. Then, a sudden increase of τ to the value
slightly above τHB is insufficient to induce a regime shift, i.e., the
seizure-like state persists. To suppress the synchronous activity and
reinstate the asynchronous state, one is required to introduce an
additional parameter perturbation such that τ exceeds the fold of
cycles bifurcation that gives rise to the system’s bistability above τHB.
One observes a good matching between the time series of macro-
scopic variables r(t), v(t), and C(t), indicated by the solid lines in
Figs. 4(b)–4(d), and the corresponding time traces (dashed lines)
obtained for the population of theta neurons given by microscopic
model (5).

Since implementing sudden parameter changes may not be
possible in real experiments, we have also examined a hysteretic

FIG. 4. Hysteretic transition between the lower-activity asynchronous state and
the synchronous state triggered by sudden changes in ATP production rate in
vicinity of subcritical Hopf bifurcation of system (11) at τHB ≈ 8.122. (a) Variation
of ATP production constant τ ; (b)–(d) evolution of macroscopic variables r(t), v(t)
and C(t) from (11) (dashed lines) and their counterparts from the microscopic
system (5) (solid lines); (e) raster plot of spike times for population of N = 104

theta neurons; and (f) system’s orbit in phase space of macroscopic variables.
Slightly above τHB, there is bistability between synchronous and asynchronous
states, while below τHB the limit cycle associated with synchronous state is the

only attractor. Parameters: K = 15.0, η̄ = −1.6, 1 = ε = α = C̃ = 1.0, and
N = 104.
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FIG. 5. Continuous variation of τ from τ = 8.15 to τ = 7.85 and back (a)
induces a hysteretic transition between the lower-activity asynchronous state and
the synchronous state in the vicinity of the subcritical Hopf bifurcation of sys-
tem (11) at τHB ≈ 8.122 described in Fig. 4. Time traces of the macroscopic
variables r(t), v(t), and C(t) from (11) (dashed lines) are compared to their coun-
terparts from the microscopic system (5) (solid lines) in (b)–(d), whereas the spike
raster plot for (5) is shown in (e). One observes a delayed (dynamic) bifurca-
tion to synchronous state as τ is decreased. Parameters: K = 15.0, η̄ = −1.6,

1 = ε = α = C̃ = 1.0, and N = 104.

transition between asynchronous and synchronous states for a grad-
ual variation in τ , see Fig. 5. The stimulation protocol consists in
gradually varying τ from τ = 8.15 to τ = 7.85 through the subcrit-
ical Hopf bifurcation and back, cf. Fig. 5(a). One observes that the
system switches from the asynchronous to the synchronous state
and remains there as τ is increased to its initial value τ = 8.15.
Moreover, the transition to the synchronous state when decreasing τ

does not occur immediately after reaching the value τ = τHB, which
conforms to the effect of delayed (dynamic) bifurcation,90,91 classi-
cally observed for slow passages through the bifurcation threshold.
While the asymptotic dynamics is captured well by the mean-field
model, the transient associated with the delayed bifurcation does
not entirely match the behavior of the microscopic system, cf.
Figs. 5(b)–5(d). Note that the similar hysteretic scenario is observed
when considering the subcritical Hopf bifurcation within the wedge-
shaped region in Fig. 2(b).

FIG. 6. Switch from the lower-activity asynchronous state to the coexisting syn-
chronous state and back induced by excitatory and inhibitory external pulse
currents Iext(t) (a), respectively. (b)–(d) Matching between the time traces of the
macroscopic model (11) and the microscopic system (5) in terms of r(t), v(t), and
C(t). (e) Spike raster plot for (5). Parameters: τ = 2.9, K = 15.0, η̄ = −2.7,

1 = ε = α = C̃ = 1.0 [diamond in Fig. 2(b)] ,and N = 104.

In the cases when the controlled manipulation of ATP produc-
tion rate is inaccessible or difficult to achieve, the switches between
the seizure-like and homeostatic states may be triggered by intro-
ducing appropriate external stimulation currents or by inducing
ATP shocks. The latter conform to the dynamic perturbations of the
ATP concentration level, which can be realized in experiments by
simply adding or washing out ATP as desired. Both methods can
be applied in parameter regions supporting bistability between the
synchronous and asynchronous states away from criticality.

In Fig. 6, it is demonstrated how the excitatory or inhibitory
external pulse currents Iext(t) may cause the switches in population
dynamics. In particular, the inhibitory pulse of sufficient duration
can suppress synchrony by inducing the transition to the coexist-
ing asynchronous state. The regime shifts are permanent in the
sense that the altered regimes persist after the external stimulation
is terminated. Note that the mean-field system captures both the
asymptotic and transient dynamics of the microscopic system, see
Figs. 6(b)–6(d).
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A similar effect can be accomplished by ATP shocks, see Fig. 7,
which comprise sharp externally induced increases (positive ATP
shocks) or decreases (negative ATP shocks) of the ATP concentra-
tion level. ATP shocks may permanently alter the system dynamics
by switching the system between the attraction basins of the coex-
isting states. For the parameters in Fig. 7, the asynchronous state is
the lower-activity equilibrium (stable focus) of system (11), whereas
the synchronous state is born from the destabilization of the higher-
activity asynchronous state. One observes that applying a positive
ATP shock of finite width to the asynchronous state is required
to trigger the switch to the synchronous state. On the other hand,
even an instantaneous negative ATP shock of small amplitude is
sufficient to suppress the seizure-like state featuring excessive syn-
chrony and promote the transition back to the homeostatic regime.
In principle, the sensitivity of an attractor to switch under dynami-
cal perturbation to a coexisting attractor depends on how close the
given attractor lies to the manifold separating between the respec-
tive basins of attraction. Note that the mean-field model captures
well the impact of the dynamic perturbation associated with ATP
shocks, both in terms of transients and the long-term dynamics, see
Figs. 7(a)–7(c).

External stimulation currents and ATP shocks can also be
applied to trigger switches between the coexisting higher- and lower-
activity asynchronous states. An example in Fig. 8 first shows how a
brief negative ATP shock induces the regime shift from the higher-
to the lower-activity equilibrium. Then, the higher-activity asyn-
chronous state is reinstated by applying a brief positive ATP shock to
the lower-activity equilibrium. Note that both the long-term dynam-
ics and the damped oscillations to equilibrium are well described by
the mean-field system, see Figs. 8(a)–8(c).

The examples provided in Sec. V indicate a spectrum of strate-
gies that may in general be applied to regain the homeostatic
state, and selecting an optimal strategy in any particular instance is
dependent on the corresponding system parameters.

VI. SUMMARY AND DISCUSSION

Within the last two decades, there has been a growing
awareness that the feedback of neuronal activity with energy
metabolism plays a pivotal role both in maintaining the neuronal
homeostasis42,49,56–58,92,93 and in development of certain neurological
disorders, such as epilepsy52–55 or Parkinson’s disease.64,65 Neverthe-
less, many earlier computational studies have suffered from improp-
erly including the energy constraints, using oversimplified models
of local dynamics or implementing too small networks with rather
strong finite-size effects. The recent theoretical breakthrough asso-
ciated with the advent of NGNM models has provided us with a
fascinating ability to address the mechanisms of neurological disor-
ders with a strong metabolic component and to even gain a foothold
in understanding the impact of certain therapeutic procedures. In
the present paper, we have introduced and analyzed a model of a
heterogeneous, globally coupled population of quadratic integrate-
and-fire neurons where the individual excitability is modified via an
ATP-sensitive potassium current. Implementing the classical reduc-
tion approach from Ref. 1, we have derived a three-dimensional
mean-field model of population dynamics. The model is intended
as a first step toward theoretically explaining the mechanism and

FIG. 7. Switches between the coexisting seizure-like and homeostatic states
triggered by sudden changes in ATP level, indicated by arrows in (c). A posi-
tive ATP shock of finite duration induces the switch from the homeostatic to the
seizure-like state. The homeostatic state is regained following an instantaneous,
small-amplitude negative ATP shock to the seizure-like state. (a)–(c) Compari-
son between the time traces r(t), v(t), and C(t) for the mean-field model (11)
(dashed lines) and the corresponding variables of the microscopic system (5)
(solid lines) and (d) spike raster plot for (5). Parameters: τ = 2.9, K = 15.0,

η̄ = −2.7, 1 = ε = α = C̃ = 1.0 [diamond in Fig. 2(b)] and N = 104.

apparent effectiveness of ketogenic diet, a long-standing treatment
for epilepsy, which nowadays receives a revived interest for helping
patients with a drug-resistant form of the disease.50,52

Using the numerical path-following technique, we have ana-
lyzed the stability and bifurcations of the derived mean-field model
in terms of the ATP production rate and the mean neuronal
excitability. The structure of the bifurcation diagram has been
shown to qualitatively depend on the coupling strength, gaining
complexity for stronger couplings. We have found two qualitatively
different types of bifurcation diagrams associated with weaker or
stronger couplings.

For weaker couplings, the diagram features two stable macro-
scopic equilibria corresponding to the lower- and the higher-activity
asynchronous state, which coexist within a small wedge-shaped
region bounded by fold bifurcation curves that meet at the cusp.
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FIG. 8. Switch between coexisting higher- and lower-activity asynchronous states
[stable foci of system (11)] and vice versa triggered by respective negative and
positive ATP shocks [see arrows in (c)]. (a)–(c) Time traces for the mean-field
model r(t), v(t), and C(t) from (11) (dashed lines) and their counterparts for
(5) (solid lines). (d) Spike raster plot for (5). Parameters: τ = 2.5, K = 15.0,

η̄ = −2.65, 1 = ε = α = C̃ = 1.0 [triangle in Fig. 2(b)]. and N = 104.

Moreover, for intermediate production rates and a sufficiently high
mean excitability, the higher-activity equilibrium undergoes a tran-
sition to synchrony via a supercritical Hopf bifurcation. Neverthe-
less, the asynchronous state is regained for sufficiently small ATP
production rates, i.e., for larger τ . Compared to the classical sce-
nario in heterogeneous populations of quadratic integrate-and-fire
neurons with instantaneous chemical synapses,1 our weak-coupling
scenario is richer in the sense that the excitability adaptation gives
rise to an additional Kuramoto-like transition to synchrony via
supercritical Hopf bifurcation. Nevertheless, it is also simpler than
the scenario reported for populations of quadratic integrate-and-
fire neurons with finite synaptic time constants,13 populations with
instantaneous chemical and electrical synapses,14,15 as well as mixed
populations of excitable and oscillatory units with Kuramoto-type
interactions,89,94 where the transition to synchrony unfolds via the
supercritical Hopf bifurcation emanating from a co-dimension two
Bogdanov–Takens point.

For stronger couplings, we have revealed a highly com-
plex bifurcation scenario organized around seven co-dimension

two points, namely, a cusp and pairs of Bogdanov–Takens,
generalized Hopf and fold-homoclinic points. In contrast to
Refs. 13–Montbrio2020, 94, and 89, the presence of excitabil-
ity adaptation here facilitates a transition to synchrony not only
from the higher-activity asynchronous state but also from the
macroscopic equilibrium corresponding to the lower-activity asyn-
chronous state. Moreover, in both instances, the Hopf bifurcations
emanating from the Bogdanov–Takens point are subcritical and
change character in generalized Hopf points for higher mean pop-
ulation excitability. Remarkably, subcritical transitions to collective
oscillations have so far not been observed in massively coupled pop-
ulations of quadratic integrate-and-fire neurons with only excitatory
couplings. Such behavior has rather been found in models involv-
ing some form of inhibition and/or connection sparseness,26,31,95 or
stochastic stimulation.21 In this context, our results indicate that
excitability adaptation may be an important additional source of
multistability in the collective dynamics of neuronal populations.

In relation to explaining the impact of the ketogenic diet as a
treatment for epilepsy, we have interpreted the macroscopic equi-
librium corresponding to the lower-activity asynchronous state as
the “normal,” i.e., the desired state, while the synchronous states
have been interpreted as pathological, i.e., seizure-like states. Note
that this interpretation is different from Ref. 38, the only study
so far that has considered the onset and propagation of epileptic
seizures within the framework of next-generation neural mass mod-
els but focuses on the impact of connectivity rather than neuronal
metabolism on the emergent dynamics. In that work, the transition
to a high-activity asynchronous state was interpreted as a seizure-
like event, but this was likely a consequence of the lack of the transi-
tion to synchrony in their model. We have unveiled three different
stimulation protocols that may induce controlled switches between
the seizure-like and homeostatic states. These methods include para-
metric perturbation of the ATP production rate, the application
of an external (excitatory or inhibitory) pulse current, and a brief
pulse-like perturbation of ATP concentration (ATP shock). The
first method consists of inducing a critical transition between the
seizure-like and the lower-activity asynchronous state, whereas the
latter two methods apply for parameter domains where the popu-
lation is bistable. The effectiveness of all three methods is corrobo-
rated both for the switching scenarios from the seizure-like to the
normal state and back. Interestingly, earlier numerical studies on
populations of Hodgkin–Huxley neurons including a similar model
of ATP-gated potassium adaptation currents have revealed only a
smooth (supercritical) transition from the synchronous (seizure-
like) to the asynchronous (normal) state with the increase of ATP
production rate.69–71 Nevertheless, our study has also revealed the
possibility of hysteretic transitions facilitated by the bistability of
these states in the vicinity of subcritical Hopf bifurcations, which
evinces yet another advantage of introducing the theoretical frame-
work of NGNM models. Note that the irreversible character of
hysteretic transitions may prove advantageous for controlling the
seizure-like states, given that the induced transition to the lower-
activity asynchronous state may then have a persistent therapeutic
effect.

Viewed from a different perspective, the possibility of featuring
either a continuous or hysteretic transition to seizure-like states may
have implications with regard to the ability to predict the onset
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of seizures from the electroencephalography recordings. Classically,
for the continuous transitions, one expects standard indicators of
criticality related to critical slowing down91,96,97 to apply, whereas
such methods may not hold for hysteretic transitions. In light of
the recently sparked controversy as to whether signatures of criti-
cal slowing down can indeed be observed prior to epileptic seizures,
with arguments provided both pro98 and contra,99 one may specu-
late that certain seizures may in fact derive from the continuous, and
some from the discontinuous hysteretic transitions, as indicated by
our model.

One should point out that the current model does not provide
an exhaustive description of the effects of epilepsy and ketogenic
diet on the local neuronal kinetics. In particular, epilepsy is known
to impact the dynamics of leaky sodium, potassium, and chlo-
ride currents by triggering changes in the corresponding reversal
potentials.100–102 Also, the current model is limited by the fact that
it does not consider the reversal potential of the ATP-dependent
potassium current and the way in which it is affected by the keto-
genic diet. While this is partly related to the lack of conclusive
experimental evidence, it is also associated with the fact that these
changes likely cannot be considered isolated from the dynamics of
the leaky currents, including their implicit dependencies on sur-
rounding glia, whose taking into account would make the model and
its subsequent analysis substantially more complex.

We believe that our results, together with Refs. 38 and 35,
have set the stage for opening a new direction of research aimed
at theoretical understanding of neurological disorders and associ-
ated therapeutic procedures by implementing the next-generation
neural mass models. This is expected to provide a valuable com-
plement to experimental studies in at least two ways. First, it will
allow for a qualitative insight into multistability which may be lack-
ing or not be easily accessible to experiments and second, it may help
in developing effective strategies to control the switching dynamics,
especially in terms of suppressing the pathological states. Concern-
ing the research on the ketogenic diet, the next step could involve
incorporating some other ingredients that may be related to its
therapeutic effects. In particular, one may attempt to derive a “com-
partmental” model of local dynamics that could distinguish between
the two different ATP production processes, namely, the classical,
glycolytic one near the membrane and the diet-related one unfolding
in mitochondria. Also, one may attempt to circumvent the limita-
tions of the current model associated with the assumed uniformity of
ATP concentration over the population, aiming to accommodate for
the neuron-specific ATP concentration variables that depend on the
spike trains of individual neurons.69 The microscopic system intro-
duced in the latter way would likely show significant deviations from
the current mean-field model, similar to those observed in Refs. 37
and 40. Finally, the immediate impact of ketone bodies on inhibi-
tion of excitatory synaptic channels could be taken into account as
a factor modulating the synaptic efficacy. More generally, an inter-
esting challenge would be to understand how the classical physical
picture developed for activity of neuronal populations within the
NGNM framework changes by incorporating the different forms
of homeostatic plasticity,103 which involve negative feedback loops
to constrain the network activity within the desired physiological
limit. Also, as a next step, it would be important to provide at
least a qualitative validation of our theoretical predictions through

elaborately designed experiments, which could then lead to further
development and refinement of the current model.
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