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Hopfield-like network with complementary encodings of memories
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We present a Hopfield-like autoassociative network for memories representing examples of concepts. Each
memory is encoded by two activity patterns with complementary properties. The first is dense and correlated
across examples within concepts, and the second is sparse and exhibits no correlation among examples. The
network stores each memory as a linear combination of its encodings. During retrieval, the network recovers
sparse or dense patterns with a high or low activity threshold, respectively. As more memories are stored, the
dense representation at low threshold shifts from examples to concepts, which are learned from accumulat-
ing common example features. Meanwhile, the sparse representation at high threshold maintains distinctions
between examples due to the high capacity of sparse, decorrelated patterns. Thus, a single network can retrieve
memories at both example and concept scales and perform heteroassociation between them. We obtain our results
by deriving macroscopic mean-field equations that yield capacity formulas for sparse examples, dense examples,
and dense concepts. We also perform simulations that verify our theoretical results and explicitly demonstrate
the capabilities of the network.
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I. INTRODUCTION

Autoassociation is the ability for a network to store patterns
of activity and to retrieve complete patterns when presented
with incomplete cues. Autoassociative networks are widely
used as models for neural phenomena, such as episodic mem-
ory [1–3], and also have applications in machine learning
[4,5]. It is well known that properties of the stored patterns
can influence the computational capabilities of the network.
Sparse patterns, in which a small fraction of the neurons is
active, can be stored at higher capacity compared to dense
patterns [6–12]. Correlated patterns can be merged by the
network to represent shared attributes [13–15]. Previous au-
toassociation models have largely considered the storage of
patterns with a single set of statistics, which requires trade-
offs among computational features. For example, the ability
to learn categories with correlated patterns may be desired,
but correlations decrease the capacity for retrieving patterns
distinctly.

We consider the possibility that a network can store two
types of patterns with different properties and, thus, different
computational roles. This idea is inspired by the architecture
of the hippocampus in mammalian brains [16]. The hip-
pocampal subfield CA3 is the presumptive autoassociative
network that stores memories of our daily experiences [1,6],
and it receives sensory information from two parallel path-
ways with complementary properties [17]. The mossy fibers
present sparser, decorrelated patterns to CA3 for storage, and
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the perforant path presents denser, correlated patterns. Both
pathways originate from the same upstream region, the en-
torhinal cortex, so they presumably encode the same sensory
experiences. However, based on theoretical studies described
above, their computational capabilities may differ. We expect
the denser, correlated patterns to build representations of con-
cepts through the accumulation of examples; meanwhile, we
expect the sparser, decorrelated patterns to represent distinct
examples at high capacity. We wish to explore whether an
autoassociative network can store and retrieve memory encod-
ings from each pathway. Doing so could enable information
representation at different scales, enabling the network to si-
multaneously discriminate between examples and generalize
across them.

To address this aim, we implement a Hopfield-like network
[18] that stores memories, each of which is an example ν of a
concept μ. Each example is encoded as both a sparse pattern
ξμν and a dense pattern ψμν . The former is generated indepen-
dently and exhibits no correlation with other sparsely encoded
examples. The latter is generated from a dense encoding ψμ

of the concept μ with correlations among examples within the
same concept. The model is defined in Sec. II, along with an
outline of the derivation of its mean-field equations.

In Sec. III we present our major results regarding pattern
retrieval. We can use a high or low activity threshold to re-
trieve sparse or dense patterns, respectively. The network has
a high capacity for sparse examples ξμν and a low capacity
for dense examples ψμν . As the number of examples stored
increases beyond the dense example capacity, a critical load
is reached above which the network instead retrieves dense
concepts ψμ. This critical load can be smaller than the sparse
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example capacity, which means that the network can recover
both ξμν’s as distinct memories and ψμ’s as generalizations
across them.

In Sec. IV we show that the network can perform het-
eroassociation between sparse and dense encodings of the
same memory. Their respective energies can predict regimes
in which heteroassociation is possible. We discuss our results
and their significance in Sec. V. Mean-field equations govern-
ing network behavior are derived in Appendix A, and capacity
formulas for ξμν , ψμν , and ψμ are derived in Appendixes B,
C, and D.

II. THE MODEL

A. Patterns and architecture

We consider a Hopfield network with neurons i = 1, . . . , N
that are either inactive (Si = 0) or active (Si = 1). The net-
work stores ν = 1, . . . , s examples for each of μ = 1, . . . , p
concepts. The concept load per neuron is α = p/N . Examples
are encoded both sparsely as ξμν and densely as ψμν . Fol-
lowing Ref. [7], sparse examples are generated independently
with density a:

ξ i
μν =

{
0 with probability 1 − a

1 with probability a.
(1)

While the term sparsity has also been used in the literature,
we use density for a because higher a implies lower sparsity.
Following Ref. [13], dense examples within a concept are
correlated in the following way. Each concept corresponds to
a dense pattern ψμ, generated independently with density 1

2 :

ψ i
μ =

{
0 with probability 1

2

1 with probability 1
2 .

(2)

Dense examples are then generated from these concepts, with
the correlation parameter c > 0 controlling the likelihood that
example patterns match their concept:

ψ i
μν =

{
ψ i

μ with probability 1+c
2

1 − ψ i
μ with probability 1−c

2 .
(3)

The average Pearson correlation coefficient between ψμν and
ψμ is c, and that between ψμν and ψμω for ν �= ω is c2. The
average overlaps are 〈

ψ i
μνψ

i
μ

〉 = 1

4
+ c

4
,

〈
ψ i

μνψ
i
μω

〉 = 1

4
+ c2

4
, (4)

where angle brackets indicate averaging over patterns.
During storage, the parameter 2γ sets the relative strength

of dense encodings compared to sparse encodings. The factor

of 2 is for theoretical convenience. Linear combinations of ξμν

and ψμν are stored in a Hopfield-like fashion with symmetric
synaptic weights

Ji j = 1

N

∑
μν

[
(1 − 2γ )

(
ξ i
μν − a

) + 2γ

(
ψ i

μν − 1

2

)]

×
[

(1 − 2γ )
(
ξ j
μν − a

) + 2γ

(
ψ j

μν − 1

2

)]

= 1

N

∑
μν

(
ηi

μν + ζ i
μν

)(
η j

μν + ζ j
μν

)
(5)

for i �= j, and Jii = 0. The second expression uses rescaled
sparse and dense patterns

ηi
μν ≡ (1 − 2γ )

(
ξ i
μν − a

)
,

ζ i
μν ≡ 2γ

(
ψ i

μν − 1
2

)
. (6)

After initializing the network with a cue, neurons are asyn-
chronously and stochastically updated via Glauber dynamics
[19]. That is, at each time step t , one neuron i is randomly
selected, and the probability that it becomes active is given by

P[Si(t + 1) = 1] = 1

1 + exp
{−β

[∑
j Ji jS j (t ) − θ

]} . (7)

Thus, activation likely occurs when the total synaptic input∑
j Ji jS j (t ) is greater than the activity threshold θ . The inverse

temperature β = 1/T sets the width of the threshold, with
β → 0 corresponding to chance-level activation and β → ∞
corresponding to a strict, deterministic threshold. We shall see
that θ plays a key role in selecting between sparse and dense
patterns; a higher θ suppresses activity and favors recovery of
sparse patterns, and vice versa for lower θ and dense patterns.

B. Overview of mean-field equations

Network behavior in the mean-field limit is governed
by a set of equations relating macroscopic order param-
eters to one another. Their complete derivation following
Refs. [7,13,19,20] is provided in Appendix A, but we will
outline our approach here. The first task is calculating the
replica partition function 〈Zn〉, where the angle brackets indi-
cate averaging over rescaled patterns ημν and ζμν and n is the
number of replica systems. By introducing auxiliary fields via
Hubbard-Stratonovich transformations and integrating over
interactions with off-target patterns, we obtain

〈Zn〉 ∝
∫ [∏

νρ

dmρ
1ν

(
βN

2π

)1
2

][∏
ρσ

dqρσ drρσ

]
exp(−βN f ),

(8)

where ρ and σ are replica indices, mρ
1ν , rρσ , and qρσ are order

parameters, and

f = 1

2

∑
νρ

(
mρ

1ν

)2 + α

2β
Tr log{δνωδρσ − β�2(1 − κ2)δνω + κ2]qρσ } + βα

2

∑
ρσ

qρσ rρσ

− 1

β

〈
log TrS exp

{
β

[∑
νρ

mρ
1νχ1νSρ −

(
θ + αs�2

2

)∑
ρ

Sρ + βα

2

∑
ρσ

rρσ SρSσ

]}〉
. (9)

054410-2



HOPFIELD-LIKE NETWORK WITH COMPLEMENTARY … PHYSICAL REVIEW E 108, 054410 (2023)

δ is the Kronecker delta and

�2 ≡ (1 − 2γ )2a(1 − a) + γ 2,

κ2 ≡ γ 2c2

(1 − 2γ )2a(1 − a) + γ 2
. (10)

Equation (9) assumes a successful retrieval regime in which
the network overlaps significantly with either one sparse ex-
ample η11 or dense, correlated examples ζ1ν of one concept.
We capture these two possibilities by introducing χ1ν , where
χ i

1ν = ηi
11δ1ν or ζ i

1ν respectively for retrieval of sparse or dense
patterns. Through self-averaging, we have replaced averages
over neurons i with averages over entries χ1ν at a single
neuron. Thus, the index i no longer appears in Eq. (9).

Then, we use the replica symmetry ansatz and saddle-point
method to obtain the following mean-field equations in terms
of the replica-symmetric order parameters m1ν , r, and Q:

m1ν = 〈〈χ1ν sig[βh]〉〉,

r = s�4 [1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2
〈〈sig[βh]2〉〉,

Q = β�2〈〈sig[βh]2 − sig[βh]〉〉, (11)

where the double angle brackets indicate averages over χ1ν

and z, an auxiliary random field with a standard normal
distribution. Meanwhile, s0 ≡ s − 1, the sigmoid or logistic
function sig(x) ≡ 1/(1 + e−x ),

h ≡
∑

ν

m1νχ1ν − φ + √
αrz,

φ ≡ θ − Qαs�2

2

1 + s0κ
4 − Q(1 − κ2)(1 + s0κ

2)

[1 − Q(1 − κ2)][1 − Q(1 + s0κ2)]
. (12)

As derived in Appendix A, m1ν’s are network overlaps with
the target pattern and other patterns correlated with it, r rep-
resents noise due to overlap with off-target patterns, and Q is
related to the overall neural activity. h is the local field in the
mean-field limit, which encapsulates the mean network inter-
action experienced by each neuron. φ is the shifted threshold,
which is empirically very similar to the original threshold θ .

Equation (11) applies to all target pattern types χ1ν that we
wish to recover. We now simplify the mean-field equations for
either sparse targets with χ1ν = η11δ1ν or dense patterns with
χ1ν = ζ1ν . In the latter case, we will perform further simplifi-
cations corresponding to recovery of either one dense example
ζ11 or one dense concept ζ1, in which case the network over-
laps equally with all dense examples ζ1ν belonging to it. We
also take the T → 0 limit, which implies a strict threshold
without stochastic activation. The full derivations are provided
in Appendixes A, B, C, and D, but the results for each target
type are provided below.

(1) Sparse example η11: Eq. (11) becomes

m11 = (1 − 2γ )a

2

[
erf

φ√
2αr

+ erf
(1 − 2γ )m11 − φ√

2αr

]
,

r = s(1 + s0κ
4)�4

2

×
[

1 − erf
φ√
2αr

+ a erf
(1 − 2γ )m11 − φ√

2αr

]
.

(13)

(2) Dense example ζ11: If we call m0 ≡ m1ν the over-
lap with other dense examples ν > 1 of the same concept,
Eq. (11) becomes

m11 = γ

2

[
1 + c

4
(erf Y++ + erf Y+−) + 1 − c

4
(erf Y−+ + erf Y−−)

]
,

m0 = γ c

2
[
1 − Q γ 2

�2 (1 − c2)
]
[

1 + c

4
(erf Y++ + erf Y+−) − 1 − c

4
(erf Y−+ + erf Y−−)

]
,

r = s�4

2

[1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2

[
1 − 1 + c

4
(erf Y++ − erf Y+−) − 1 − c

4
(erf Y−+ − erf Y−−)

]
,

Q = �2

√
2πσ0

[
1 + c

4

(
e−Y 2

++ + e−Y 2
+−

) + 1 − c

4

(
e−Y 2

−+ + e−Y 2
−−

)]
, (14)

where

σ 2
0 ≡ s0γ

2(1 − c2)m2
0 + αr,

Y±± ≡ γ m11 ± s0γ cm0 ± φ√
2σ0

. (15)

Sign choices in Y±± correspond to respective signs on the
right-hand side of the equation.

(3) Dense concept ζ1: If we call m1 the over-
lap with the target dense concept and ms ≡ m1ν the
overlap with all of its dense examples ν, Eq. (11)

becomes

m1 = γ

4
(erf Y+ + erf Y−),

ms = γ c

4
[
1 − Q γ 2

�2 (1 − c2)
] (erf Y+ + erf Y−),

r = s�4

2

[1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2

×
[

1 − 1

2
(erf Y+ − erf Y−)

]
,

Q = �2

√
8πσs

(
e−Y 2

+ + e−Y 2
−
)
, (16)
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where

σ 2
s ≡ sγ 2(1 − c2)m2

s + αr

Y± ≡ sγ cms ± φ√
2σs

. (17)

The sign choice in Y± corresponds to the sign on the right-
hand side of the equation.

III. T = 0 CAPACITIES

A. Retrieval regimes

Large values for the overlaps m11 and m1 in Eqs. (13), (14),
and (16) signal that retrieval of target patterns is possible. To
be more precise, we derive in Appendix A that for T = 0,

m1ν = 〈χ1νS〉, (18)

where χ1ν and S are, respectively, the pattern entry and activ-
ity for a single neuron and angle brackets indicate an average
over χ1ν . Again, the neuron index i does not appear due to
self-averaging. Successful retrieval means that the network
activity S is similar to the original, unscaled patterns ξ11, ψ11,
and ψ1 with 0/1 entries. With the rescalings in Eq. (6), this
condition implies m11 ∼ (1 − 2γ )a(1 − a) for sparse exam-
ple targets, m11 ∼ γ /2 for dense example targets, and m1 ∼
γ /2 for dense concept targets. For ease of comparison, we
define a rescaled overlap

m′ =

⎧⎪⎨
⎪⎩

m11/(1 − 2γ )a(1 − a) sparse example,

m11/(γ /2) dense example,

m1/(γ /2) dense concept,

(19)

so m′ ∼ 1 corresponds to the retrieval phase, as an order-of-
magnitude estimate.

To determine the extent of retrieval phase, we numerically
solve the mean-field equations for a given set of network
parameters. Phase boundaries are found by adjusting the num-
ber of examples stored per concept s and looking for the
appearance or disappearance of nontrivial solutions. These
boundaries will change as a function of the number of con-
cepts per neuron α, the sparse pattern density a, the dense
pattern correlation c, and the relative dense storage strength
γ . We treat the shifted activity threshold φ as a free parameter
that can be adjusted to maximize m11 and m1.

Figure 1(a) shows that for a given concept load α, the
network can retrieve sparse and dense examples below critical
example loads sc, which we call the capacities. Above the
capacities, catastrophic interference between the target and
off-target patterns prevents successful retrieval. Figure 1(b)
shows that the network can retrieve dense concepts above a
critical sc. Thus, it builds concepts, which are not directly
stored, through accumulating shared features among dense
examples. With greater correlation c, fewer examples are re-
quired to appreciate commonalities, so sc is lower. Note that
for low enough α, the network can recover both sparse ex-
amples and dense concepts at intermediate values of s. Thus,
our network is capable of retrieving both example and concept
representations of the same memories by tuning an activity
threshold.

Optimal retrieval of dense patterns occurs at threshold
φ = 0 and of sparse patterns at φ/(1 − 2γ )2a ≈ 0.6. These
values which match results for classic Hopfield networks that

FIG. 1. Retrieval properties for sparse examples, dense exam-
ples, and dense concepts. (a), (b) Retrieval regimes (shaded regions)
obtained by numerically solving the mean-field equations. Their
boundaries correspond to capacities sc. Sparse patterns are recovered
at high threshold and dense patterns at low threshold. (a) More
examples can be retrieved sparsely than they can be densely. (b) For
small enough concept loads α and intermediate example loads s, both
sparse examples and the dense concepts can be retrieved. (c) Network
overlap with target patterns at capacity [Eq. (19)]. The curves for the
three dense example conditions closely follow one another. Sparse
patterns have density a = 0.01 and the dense storage strength is
γ = 0.1.

store only dense or only sparse patterns [7,21]. At sc, the
rescaled overlap m′

c takes values above 0.5 over the param-
eters explored [Fig. 1(c)] before jumping discontinuously to
a much lower value immediately outside the retrieval regime.
Such a first-order transition has also been observed in classic
Hopfield networks [7,13,19].

B. Overview of capacity formulas

We then seek to obtain mathematical formulas for the
capacity, or critical example load, sc of each type of pat-
tern. Not only would these formulas provide a direct way of
determining whether pattern retrieval is possible for a given
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FIG. 2. (a) Capacity sc for sparse examples. Connected points
indicate numerical analysis of Eq. (13). (b) Collapse of sc curves
under rescaled variables. Gray line indicates theoretical formula
Eq. (20). (c) sc is maximized at intermediate values of density a.
Dense patterns have correlation c = 0.1. The dense storage strength
is γ = 0.1.

set of network parameters, they would offer mathematical
insight into network behavior. As detailed in Appendixes B,
C, and D, we apply various approximations to the mean-field
equations Eqs. (13), (14), and (16) to derive the following
formulas for sc, which match well with numerical solutions
over a wide range of parameters (Figs. 2, 3, and 4).

(1) Sparse example η11 (Fig. 2): The capacity is

1

α
∼ sc(1 + scκ

4)
�4

(1 − 2γ )4

| log a|
a

, (20)

which means that

sc ∼
√

1

4κ8
+ (1 − 2γ )4

γ 4c4

a

| log a|
1

α
− 1

2κ4
. (21)

FIG. 3. (a) Capacity sc for dense examples. Connected points
indicate numerical analysis of Eq. (14). (b) Collapse of sc curves
under rescaled variables. Gray lines indicate theoretical formula (23).
The dense storage strength is γ = 0.1.

In sparse Hopfield networks without dense patterns, the capac-
ity always increases for sparser patterns [7]. In contrast, our
capacity for sparse examples peaks at intermediate densities
a [Fig. 2(c)]. While sparser patterns interfere less with one
another, their smaller basins of attraction are more easily over-
whelmed by those of dense patterns, whose density is always
0.5. We can quantitatively understand the tradeoff between
these two factors in the c2 → 0 limit, where Eq. (20) becomes

αsc ∼ a

(a + ad)2| log a| (22)

for ad ≡ γ 2/(1 − 2γ )2. ad represents interference from dense
patterns and acts as the crossover point in the tradeoff. For
a  ad, αsc ∼ 1/a| log a|, recovering the classic sparse Hop-
field scaling in which sparser patterns exhibit higher capacity
[7]. However, for a � ad, ad dominates the denominator and
αsc ∼ a/| log a|, disfavoring sparser patterns. If we ignore the
slowly varying logarithm in Eq. (22), sc is exactly maximized
at a = ad. Using the value γ = 0.1 in Fig. 2(c), ad ≈ 0.016,
which agrees well with the numerically obtained maxima.

(2) Dense example ζ11 (Fig. 3): The capacity is

sc ∼ 1

3c3 + 18�4

γ 4 α
. (23)

At large α, this critical number of examples per concept sc is
inversely proportional to the number of concepts per neuron
α, indicating that the total number of examples stored per
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FIG. 4. (a) Capacity, or critical example load, sc for dense concepts. Connected points indicate numerical analysis of Eq. (16). (b)–(d)
Approximate collapse of sc curves under rescaled variables. Gray solid lines indicate theoretical formula Eq. (24). (e) For the sparsest patterns,
sc curves exhibit better collapse under the rescaling scc3/2 compared to scc2 in (d). Gray dotted line indicates the theoretical formula (25),
which better matches the numerical results. It exhibits weak dependence on dense correlation c, and we show its behavior only for c = 0.02.
The dense storage strength is γ = 0.1.

neuron αsc saturates at a constant value. When examples are
distributed into many concepts, concept identity becomes in-
significant, so only the total number of stored patterns matters.
At small α, sc itself saturates at a constant value determined by
the dense correlation c. When concepts are few, interference
with other concepts becomes less important than interference
within the same concept, so only the number of stored patterns
per concept matters.

(3) Dense concept ζ1 (Fig. 4): There are two cases. For
larger densities a, the critical example load approximately col-
lapses as a function of scc2 [Figs. 4(b) and 4(c)]. This function
can be obtained by numerically inverting the following first
equation for y and substituting it into the second:

2�4

γ 4c2
α ≈ (1 − 2γ )2a(1 − a)

γ 2

(√
2
π

ye−y2/2
)3

y2
(

erf y√
2

−
√

2
π

ye−y2/2
)

−
(√

2

π
ye−y2/2

)2

,

scc2 ≈ (1 − 2γ )2a(1 − a)

γ 2

√
2
π

ye−y2/2

erf y√
2

−
√

2
π

ye−y2/2
. (24)

The solution is unique for any parameter values because the
right-hand side of the first equation always monotonically
decreases as a function of y over its positive range. For smaller

a, the critical example load does not collapse so tightly as
a function of scc2 for different values of c [Fig. 4(d)]. We
calculate that it instead approximately collapses as a function
of scc3/2 [Fig. 4(e)]:

scc3/2 ≈ 3

(
3π

4

)1/4(
�4

γ 4c2
α

)1/4

+ 3π

4
c−1/2

(
�4

γ 4c2
α

)
.

(25)

The second term contains a factor of c−1/2, which changes
relatively slowly compared to the other powers of c found in
the rescaled concept load α�4/γ 4c2. The two terms capture
the behavior of sc at low and high rescaled concept load, re-
spectively. Nevertheless, more universal scaling relationships
have yet to be found for the dense concept sc, indicating that
many network features may independently govern concept
building.

C. Capacities of simulated networks

We perform simulations to verify our capacity calculations.
For each simulation condition, we construct replicate net-
works that store different randomly generated patterns. When
generating sparse patterns of density a, we fix the number
of active neurons to Na to reduce finite-size effects. Neural
dynamics proceed asynchronously in cycles wherein every
neuron is updated once in random order. We use N = 10000
neurons and dense strength γ = 0.1, unless otherwise noted.
Retrieval is assessed by the following definition of overlap
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between network activity S and the unscaled target pattern ω,
which is a sparse example ξμν , a dense concept ψμν , or a dense
concept ψμ:

m̂ = 1

Naω(1 − aω )

∑
i

(ωi − aω )Si, (26)

where aω = a for sparse patterns and aω = 1/2 for dense
patterns. Based on Eqs. (1), (2), and (3), we expect m̂ ≈ 1 to
indicate successful retrieval. For random activity, m̂ ≈ 0. This
overlap m̂ is similar to m′ in Eq. (19), which concerned the
scaled target patterns χ = η11, ζ11, and ζ1.

Capacities are assessed by using the true target patterns
as cues; in other words, our simulations probe the stability
of the target patterns. For sparse examples, we optimize over
the threshold θ by numerical search. For dense patterns, we
use θ = 0. We use β → ∞ in Eq. (7) because our theoretical
calculations were performed for T → 0. We define successful
retrieval as m̂ > (1 + m̂0)/2, where m̂0 is the overlap expected
for off-target patterns within the same concept. Using Eq. (4),
m̂0 = 0 for sparse examples, m̂0 = c2 for dense examples, and
m̂0 = c for dense concepts.

Figure 5 reveals good agreement between simulations and
numerical analysis of the mean-field equations for capacities
of all target types. This supports the validity of our derivations
and the simplifications we invoked to perform them.

IV. HETEROASSOCIATION

A. Performance of simulated networks

Our network stores linear combinations of sparse and dense
patterns, and its connectivity matrix contains interactions be-
tween the two [Eq. (5)]. Thus, we suspect that in addition to
autoassociation for each target type, it can perform heteroas-
sociation between them. We run simulations to test this ability.
We use p = 10 concepts and store either s = 20 examples
per concept during retrieval of sparse examples ξμν and dense
concepts ψμ or s = 3 during retrieval of dense examples ψμν .
Sparse patterns have density a = 0.01 and dense patterns have
correlation parameter c = 0.4. We initialize the network state
to a noisy version of a sparse example, dense example, or
dense concept, and attempt to retrieve each type as the target
pattern. We create these noisy cues by randomly flipping a
fraction 0.01 of the cue pattern between inactive and active.
We then asynchronously evolve the network similarly as in the
previous section. With theoretical motivation in Appendix B,
we define the rescaled parameters

θ ′ = θ/(1 − 2γ )2a and β ′ = β(1 − 2γ )2a, (27)

with rescaled temperature T ′ = 1/β ′. To retrieve sparse ex-
amples, we apply a threshold θ ′ = 0.6, and to retrieve dense
examples and concepts, we apply θ ′ = 0; these thresholds
are immediately applied from the start. We use inverse tem-
perature β ′ = 50. Finally, we assess the overlap between the
final network activity and the target pattern. If concepts are
used as cues and examples are desired as targets, the highest
overlap with any example within the cued concept is reported.
Successful retrieval is defined via the overlap m̂ as described
above [Eq. (26)].

FIG. 5. Capacities sc for (a) sparse examples, (b) dense exam-
ples, and (c) dense concepts obtained by numerical calculations
(lines) and simulations (points). Lines indicate analysis of the mean-
field equations (13), (14), and (16). Points indicate means over eight
replicate simulated networks, and vertical bars indicate standard
deviations which are often obscured by the points. In each replicate
network, 20 cues are tested with simulations lasting 10 update cycles.
The dense storage strength is γ = 0.1.

Figure 6(a) shows that the network is generally capable
of heteroassociation using the parameters described above,
which define the baseline condition. By increasing the number
of concepts, heteroassociative performance is largely pre-
served, but note that the retrieval of dense concepts from
sparse examples is impaired [Fig. 6(b)]. We next amplify
noise by either raising the temperature, which introduces
more randomness during retrieval, or randomly flipping more
neurons during cue generation. Sparse example targets are
more robust than dense example targets with respect to higher
temperature [Fig. 6(c)]; meanwhile, dense example cues are
more robust than sparse example cues with respect to cue
corruption [Fig. 6(d)]. These observations encompass autoas-
sociation as well as heteroassociation. Thus, the dual encoding
of memories not only allows for retrieval of both examples and
concepts, as noted in Fig. 1(b), but it also mitigates the impact
of noise since sparse and dense patterns are more robust to
retrieval and cue noise, respectively.
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FIG. 6. Auto- and heteroassociation among sparse and dense
patterns demonstrated by network simulations. (a) Baseline to which
various conditions are compared. (b) The number of concepts is
increased from p = 5 to 30. (c) The rescaled temperature is increased
from T ′ = 1/50 to 1/5. (d) The fraction of the cue pattern flipped is
increased from 0.01 to 0.2. (e) The dense pattern storage strength is
decreased from γ = 0.1 to 0.055. For dense example and concept
targets, we use rescaled threshold θ ′ = 0. For sparse example tar-
gets, we use θ ′ = 0.6. Overlaps m̂ reported are averages over eight
replicate networks, with one corresponding to perfect retrieval and
0 corresponding to random activity. In each, 20 cues are tested with
simulations lasting 20 update cycles.

B. Bidirectional heteroassociation and γ

Notice in Fig. 6(a) that while dense concept targets can be
retrieved from sparse example cues, the reverse is not pos-
sible. The ability to perform bidirectional heteroassociation
between a concept and its examples is of computational sig-
nificance, so we seek to find network parameters that achieve
it. Intuitively, lowering the storage strength of dense patterns
γ should bias the network towards retrieving sparse patterns.
Indeed, doing so improves retrieval of sparse examples from
dense concepts [Fig. 6(e)]. Moreover, the network is still
capable of the reverse process, albeit with some decrease in
performance.

The value of γ appears critical to the ability to retrieve
sparse examples from dense concepts. We hypothesize that
this connection is mediated by the relative energy of different
pattern types. As described in Appendix A, the Hamiltonian
of our network is

H = − 1

2N

∑
μν

∑
i �= j

(
ηi

μν + ζ i
μν

)(
η j

μν + ζ j
μν

)
SiS j + θ

∑
i

Si,

(28)

where, again, ημν and ζμν are rescalings of sparse examples
ξμν and dense examples ψμν [Eq. (6)]. We set the network
activity S to a sparse example ξμν or dense concept ψμ and
calculate the average over patterns 〈H〉. Using Eq. (4), we

FIG. 7. The dense pattern storage strength γ controls the ability
to retrieve sparse examples from dense concepts by changing their
relative energies. (a) Hamiltonian energies for rescaled threshold
θ ′ = 0.6 and network size N = 10000 [Eq. (29)]. For c = 0.1, we
store s = 80 patterns per concept, and for c = 0.4, s = 20. Inset
shows sparse example energy in detail. (b) Critical dense strength
γc below which sparse examples can be retrieved by dense concept
cues. Theoretical predictions are the locations of energy crossovers in
(a). (c) Phase diagram for auto- and heteroassociation among sparse
examples and dense concepts in simulated networks. Dense patterns
have correlation parameter c = 0.4, and the temperature is T = 0.
Blue and red shaded regions exhibit unidirectional heteroassociation,
and the doubly shaded region exhibits bidirectional heteroassocia-
tion. Autoassociation occurs below the purple dashed line and above
the orange dashed line; for clarity, these regions are not shaded.
We use p = 5 concepts, and sparse patterns have density a = 0.01.
Simulations are performed without cue noise. For dense concept tar-
gets, we use θ ′ = 0, and for sparse example targets, we use θ ′ = 0.6.
Points indicate means over eight replicate networks, and vertical bars
indicate standard deviations which are often obscured by the points.
In each replicate network, 20 cues are tested with simulations lasting
20 update cycles.

obtain

〈H〉
N

≈
{

− (1−2γ )2a2(1−a)2

2 + θa sparse example,

− sγ 2c2

8 + θ
2 dense concept.

(29)

Figure 7(a) shows Eq. (29) calculated in the retrieval regime
for sparse examples with θ ′ = 0.6. The Hamiltonian for dense
concepts decreases with γ and eventually crosses the value
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for sparse examples, which remains relatively constant. To
connect these results with heteroassociative performance, first
consider c = 0.4, which is the correlation value used in the
simulations in Fig. 6. Recall that baseline networks expe-
rience difficulty in retrieving sparse examples from dense
concepts [Fig. 6(a)]. These networks have γ = 0.1, for which
dense concepts exhibit lower energy than sparse examples do
[Fig. 7(a)], even with the high threshold θ ′ = 0.6 intended to
retrieve the latter. The increase in energy required to proceed
from cue to target may explain the failure to perform this het-
eroassociation. It can be performed for γ = 0.055 [Fig. 6(e)],
and here the energy of dense concepts at high threshold in-
creases above that of sparse examples [Fig. 7(a)]. Thus, the
progression from cue to target is energetically favored.

The crossover point γc between the high-threshold energies
of dense concepts and sparse examples appears to define the
phase boundary for heteroassociation from the former to the
latter. To test this prediction, we evaluate simulated networks
at varying values of γ . Successful retrieval of sparse examples
is assessed through the overlap m̂ with the same cutoff values
as described above [Eq. (26)]. Figure 7(b) demonstrates that
the energy crossover indeed predicts γc for c = 0.4. The c =
0.1 case shows lower quantitative agreement between simu-
lation and theory, although the qualitative observation of a
higher γc is captured. Finite-size effects, higher energies of in-
termediate states along possible transition paths, and trapping
in local energy minima may account for the discrepancy. For
T > 0, the disregard of entropic contributions in our Hamilto-
nian analysis may also contribute to the disparity, although the
lack of significant temperature dependence in our simulations
makes this consideration less important [Fig. 7(b)].

For the c = 0.4 and T = 0 case, we construct a heteroas-
sociation phase diagram by simulating networks with various
dense strengths γ and example loads s [Fig. 7(c)]. At inter-
mediate values of γ and s, there is a regime for successful
bidirectional heteroassociation between sparse examples and
dense concepts. At lower values of either γ or s, only unidi-
rectional heteroassociation from dense concept cues to sparse
example targets is possible, and at higher values, only the
reverse unidirectional heteroassociation is possible. For com-
parison, autoassociation capacities for sparse examples and
dense concepts are also shown. The phase boundary for re-
trieving sparse examples is much higher with identical cues
than with dense concept cues, reflecting our observations
that even below capacity, this heteroassociation direction is
granted only for certain γ . In contrast, the phase boundary for
retrieving dense concepts is similar with either type of cue,
indicating an easier heteroassociation direction.

Due to the importance of γ , we present additional mean-
field capacity results in which it is systematically varied
(Fig. 8). For low density a, there is a range of intermediate
γ and s in which both sparse examples and dense con-
cepts are stable [Fig. 8(b)]. Figures 8(c)–8(h) illustrate that
our theoretical capacity formulas are still valid as functions
over γ .

V. DISCUSSION

In summary, we present a Hopfield-like network that stores
memories as both sparse patterns with low correlation and

dense patterns with high correlation. By adjusting the ac-
tivity threshold, the network can retrieve patterns of either
sparsity. The capacity for sparse patterns is large, so many
distinct memories can be retrieved. In contrast, as more dense
patterns are stored, they merge according to their correlation
structure such that concepts are built through the accumula-
tion of examples. We derive mean-field equations that govern
the retrieval of sparse examples, dense examples, and dense
concepts, and we calculate capacity formulas for each type of
retrieved pattern. We observe that the network can retrieve one
type of target pattern from its corresponding cue of a different
type, and we explain that regimes of successful heteroassocia-
tion can be predicted by the relative energies of cue and target
patterns.

Our network offers an alternative paradigm for building
memory hierarchies in autoassociative networks. Ultrametric
networks have been previously explored as an architecture for
storing and retrieving memories at different scales [22–27].
Their structure resembles a tree spanning multiple levels.
Each pattern at one level serves as a concept-like trunk from
which correlated branches are generated to form the next,
more example-like level. While these models are insightful
and influential, they possess certain disadvantages that our
network can address. They typically use an activity threshold
or, equivalently, an external field to move between levels,
which is also the case in our work. In one ultrametric model,
the field is inhomogeneous and proportional to the pattern
retrieved [26]. Our activity threshold is homogeneous and
does not require memory of the pattern retrieved, though
implementing such a feature may improve retrieval perfor-
mance. In another hierarchical model, coarser representations
are stored more sparsely and retrieved at higher threshold
[27]. This arrangement prevents the network from leveraging
the higher capacity of sparser patterns to store finer repre-
sentations, which are more numerous. Moreover, ultrametric
Hopfield networks often require complex storage procedures
that require a priori knowledge of concepts or other ex-
amples [23,24,26,27]. They do not permit the unsupervised
learning of concepts through the accumulation of examples
over time, which is achieved by our simple Hebbian learning
rule and strengthens the biological significance of our model.
Meanwhile, our model’s requirement for sparse, decorrelated
patterns in addition to dense, correlated patterns can be im-
plemented by neural circuits which are thought to naturally
perform decorrelation through sparsification [6,16,28–33].

While the two pattern types are linearly summed in our
model to facilitate mathematical derivations, it is possible
to implement nonlinear summation, which may better reflect
how inputs are combined in biological neurons [34–36]. In
Ref. [16] we have shown through simulations that the central
capabilities of this model can be preserved under sublinear
and superlinear summation. Reference [36] explores multi-
plicative integration with the storage of only one pattern per
memory formed by the neurons commonly activated through
both pathways. Returning to biological motivation for our
model, our results offer a mechanistic explanation for how
complementary pathways within the hippocampus can un-
derlie its observed ability to recall memories at different
resolutions. The hippocampus has long been known to medi-
ate episodic memory, the ability to recall specific, personally
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FIG. 8. Capacities sc as a function of dense pattern storage strength γ . (a), (b) Retrieval regimes (shaded regions) for sparse examples,
dense examples, and dense concepts obtained by numerically solving the mean-field equations. Their boundaries correspond to capacities sc.
Dense patterns have correlation parameter c = 0.1. Capacities sc for (c) sparse examples, (d) dense examples, and (e) dense concepts. Collapse
of sc curves for (f) sparse examples, (g) dense examples, and (h) dense concepts under rescaled variables. Gray lines indicate theoretical
formulas (20), (23), and (24), respectively. The concept load is α = 0.001 concepts per neuron.

experienced events [37,38]. It is thought to be capable of pat-
tern separation, a process that accentuates differences between
similar memories [39,40]. Meanwhile, more recent research
has uncovered that the hippocampus is also involved in gener-
alizing over episodes through statistical learning [41–45]. The
observation of neurons that respond to many representations
of a single celebrity or personal acquaintance is one striking
case of learning concepts through the accumulation of individ-
ual experiences [46,47]. Because of a difference in sparsity,
memory types in our model are retrieved at different activity
thresholds, which may correspond biologically to different
levels of inhibition in CA3. In many mammals, including
rodents and primates, the hippocampus exhibits a theta os-
cillation, in which inhibition is modulated with subsecond
periodicity [48]. By analyzing neural encoding properties as
a function of theta phase in Ref. [16], we indeed find experi-

mental support for the theta oscillation to serve as the activity
threshold in our model. The selection between example-like
and concept-like representations by theta inhibition has cer-
tain computational advantages. A downstream network that
serves to integrate information across the two representational
scales can access both over subsecond timescales. Meanwhile,
the activation of only one encoding at a time may prevent
interference or overshadowing between them. In addition, cer-
tain tasks may better performed with either more example-like
or more concept-like representations. Such preferential recall
could be accomplished by adjusting the average inhibitory
tone. It is conceivable that our model may apply to brain
regions other than the hippocampus if they receive converg-
ing inputs with different sparsities and correlation structures.
In particular, the Drosophila olfactory system and the mam-
malian cerebellum contain circuits that start at a common
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upstream region; branch into two pathways, one of which
undergoes decorrelation through sparsification; and converge
at a common downstream region. In the former system, the
antennal lobe is the upstream region, Kenyon cells perform
decorrelation, and the lateral horn is the downstream region
[49,50]. In the latter, the three components are mossy fibers
(different from the ones in hippocampus), granule cells (also
different from the ones in hippocampus), and deep cerebellar
nuclei [49,51]. Note that these circuits have an additional
population between the decorrelation and downstream re-
gions that is believed to perform rich computations through
highly plastic synapses: the mushroom body output neurons in
Drosophila and the Purkinje cells in the cerebellum [51,52].
More investigation is required to assess the applicability of
our model to these systems.
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APPENDIX A: MEAN-FIELD EQUATIONS

1. Replica partition function

This derivation of mean-field equations governing the
macroscopic behavior of our network is strongly influenced
by Refs. [7,13,20]. All of our calculations will be performed
in the thermodynamic limit where the network size N → ∞.
Our network, presented in Sec. II, is described by a Hamilto-
nian

H = − 1

2N

∑
μν

∑
i �= j

(
ηi

μν + ζ i
μν

)(
η j

μν + ζ j
μν

)
SiS j + θ

∑
i

Si

= − 1

2N

∑
μν

[∑
i

(
ηi

μν + ζ i
μν

)
Si

]2

+ 1

2N

∑
μν

∑
i

[(
ηi

μν + ζ i
μν

)
Si
]2 + θ

∑
i

Si. (A1)

To reiterate, S is the network activity and θ is the activity
threshold. ημν and ζμν are rescaled sparse and dense pat-
terns, respectively, for ν = 1, . . . , s examples in each of μ =
1, . . . , αN concepts [Eq. (6)]. Each rescaled pattern entry is
randomly generated as follows:

ηi
μν =

{
(1 − 2γ )(1 − a) with probability a

−(1 − 2γ )a with probability 1 − a
,

ζ i
μν =

{
ζ i
μ with probability 1+c

2

−ζ i
μ with probability 1−c

2

,

ζ i
μ =

{
γ with probability 1

2

−γ with probability 1
2

(A2)

for sparse pattern density a, dense pattern correlation c, and
dense pattern storage strength 2γ . Their average values are 0,
and the average overlaps between them are also 0 except for〈

ζ i
μνζ

i
μ

〉 = γ 2c,〈
ζ i
μνζ

i
μω

〉 = γ 2c2. (A3)

We will forgo introducing external fields. By averaging
over examples and concepts,

1

2N

∑
μν

∑
i

[(
ηi

μν + ζ i
μν

)
Si
]2

≈ αs

2
[(1 − 2γ )2a(1 − a) + γ 2]

∑
i

Si, (A4)

If we define

�2 ≡ (1 − 2γ )2a(1 − a) + γ 2, (A5)

we obtain

H = − 1

2N

∑
μν

[∑
i

(
ηi

μν + ζ i
μν

)
Si

]2

+
(

θ + αs�2

2

)∑
i

Si.

(A6)

To understand this system, we would like to calculate its
free energy averaged over instantiations of the patterns: F =
−(1/β )〈log Z〉. Here Z is the partition function, β = 1/T
is inverse temperature, and angle brackets indicate averages
over ηi

μν and ζ i
μν . Since we cannot directly average over the

logarithm of the partition function Z , we use the replica trick
by writing formally:

F

N
= − 1

βN
〈log Z〉

= − 1

βN
lim
n→0

〈Zn〉 − 1

n

= − 1

βN
lim
n→0

1

n
log〈Zn〉. (A7)

We interpret Zn as a partition function for a set of replica
networks ρ = 1, . . . , n with the same parameter values and
stored patterns, but the neural activities Sρ

i may vary across
replicas. The Hamiltonian of each replica is

Hρ = − 1

2N

∑
μν

[∑
i

(
ηi

μν + ζ i
μν

)
Sρ

i

]2

+
(

θ + αs�2

2

)∑
i

Sρ
i , (A8)

and the replica partition function, averaged over patterns, is

〈Zn〉 =
〈

TrS

∏
ρ

exp[−βHρ]

〉
. (A9)

The trace is evaluated over all neurons i and replicas ρ. We
invoke the standard Gaussian integral identity∫

dm e−Am2+Bm =
√

π

A
eB2/4A (A10)
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to obtain

〈Zn〉 =
〈

TrS

∏
ρ

{
exp

[
−β

(
θ + αs�2

2

)∑
i

Sρ
i

]∏
μν

∫
dmρ

μν

(
βN

2π

) 1
2

exp

[
− βN

2

(
mρ

μν

)2 + βmρ
μν

∑
i

(
ηi

μν + ζ i
μν

)
Sρ

i

]}〉
.

(A11)

2. Uncondensed patterns

We search for a retrieval regime in which the network successfully recovers a sparse example η11, a dense example ζ11, or a
dense concept ζ1. All stored patterns in other concepts μ > 1 are called uncondensed and will not significantly overlap with the
network activity. We seek to expand in these small overlaps and integrate over them. First,〈∏

μ>1
νρ

exp

[
βmρ

μν

∑
i

(
ηi

μν + ζ i
μν

)
Sρ

i

]〉
=

∏
i

μ>1

〈∏
ν

exp

[
β
(
ηi

μν + ζ i
μν

)∑
ρ

mρ
μνSρ

i

]〉
. (A12)

Using

Yν ≡ β
∑

ρ

mρ
μνSρ

i , (A13)

where we have suppressed dependence on μ and i for convenience, we can write〈∏
ν

exp
[(

ηi
μν + ζ i

μν

)
Yν

]〉 =
[∏

ν

〈
exp

[
ηi

μνYν

]〉]〈∏
ν

exp
[
ζ i
μνYν

]〉
. (A14)

For uncondensed patterns μ > 1, mρ
μν � 1 because, as we will derive later, it is the overlap between Sρ and ημν + ζμν . Thus,

we can crucially expand in Yν � 1 and average over the uncondensed patterns:

〈
exp

[
ηi

μνYν

]〉 ≈ 1 + 1

2
(1 − 2γ )2a(1 − a)Y 2

ν ≈ exp

[
1

2
(1 − 2γ )2a(1 − a)Y 2

ν

]
. (A15)

Continuing, 〈∏
ν

exp
[
ζ i
μνYν

]〉 ≈ 1

2

∏
ν

(
1 + γ cYν + γ 2

2
Y 2

ν

)
+ 1

2

∏
ν

(
1 − γ cYν + γ 2

2
Y 2

ν

)

= 1 + 1

2

∑
νω

[γ 2(1 − c2)δνω + γ 2c2]YνYω

≈ exp

{
1

2

∑
νω

[γ 2(1 − c2)δνω + γ 2c2]YνYω

}
. (A16)

Averaging is performed first over ν, then over μ [Eq. (A3)]. Combining the equations above, we obtain〈∏
μ>1
νρ

exp

[
βmρ

μν

∑
i

(
ηi

μν + ζ i
μν

)
Sρ

i

]〉
=

∏
μ>1

exp

⎧⎨
⎩βN

2
β�2

∑
νωρσ

[(1 − κ2)δνω + κ2]qρσ mρ
μνmσ

μω

⎫⎬
⎭ (A17)

if we define

κ2 ≡ γ 2

�2
c2 (A18)

and enforce

qρσ = 1

N

∑
i

Sρ
i Sσ

i . (A19)

We will do so by introducing the following integrals over delta-function representations:

∏
ρσ

∫
dqρσ δ

(
qρσ − 1

N

∑
i

Sρ
i Sσ

i

)
∝

∫ ⎛
⎝∏

ρσ

dqρσ drρσ

⎞
⎠ exp

⎛
⎝−β2αN

2

∑
ρσ

qρσ rρσ + β2α

2

∑
iρσ

rρσ Sρ
i Sσ

i

⎞
⎠ , (A20)

where rρσ are additional auxiliary variables whose integration limits extend from −i∞ to i∞, and the factor of β2αN/2 is
introduced for later convenience.
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We can now integrate over the uncondensed overlaps mρ
μν :〈∏

μ>1
νρ

∫
dmρ

μν

(
βN

2π

) 1
2

exp

[
−βN

2

(
mρ

μν

)2 + βmρ
μν

∑
i

(
ηi

μν + ζ i
μν

)
Sρ

i

]〉

∝
∏
μ>1

∫ ⎡
⎣∏

νρ

dmρ
μν

(
βN

2π

) 1
2

⎤
⎦ exp

⎛
⎝−βN

2

∑
νωρσ

{δνωδρσ − β�2[(1 − κ2)δνω + κ2]qρσ }mρ
μνmσ

μω

⎞
⎠

= (
det{δνωδρσ − β�2[(1 − κ2)δνω + κ2]qρσ }− 1

2
)αN−1

≈ exp

(
−αN

2
Tr log{δνωδρσ − β�2[(1 − κ2)δνω + κ2]qρσ }

)
, (A21)

where αN  1 is the total number of concepts.
Thus, so far, our partition function is

〈Zn〉 ∝
∫ ⎡

⎣∏
νρ

dmρ
1ν

(
βN

2π

) 1
2

⎤
⎦

⎛
⎝∏

ρσ

dqρσ drρσ

⎞
⎠

× exp

[
−βN

(
1

2

∑
νρ

(
mρ

1ν

)2 + α

2β
Tr log{δνωδρσ − β�2[(1 − κ2)δνω + κ2]qρσ } + βα

2

∑
ρσ

qρσ rρσ

)]

×
˝

TrS exp

⎡
⎣β

∑
iνρ

mρ
1ν

(
ηi

1ν + ζ i
1ν

)
Sρ

i − β

(
θ + αs�2

2

)∑
iρ

Sρ
i + β2α

2

∑
iρσ

rρσ Sρ
i Sσ

i

⎤
⎦
˛
. (A22)

3. Condensed patterns

Now we consider the target patterns, whose large overlaps cannot be expanded into Gaussians and integrated away. When
retrieving sparse examples, the network overlaps significantly with one stored pattern η11, but not η1ν for ν > 1 and ζ1ν , which
are nearly orthogonal to η11. When retrieving dense examples or concepts, the network overlaps significantly with all stored
examples ζ1ν within the target concept because they are correlated, but not η1ν . Thus, either

∑
i η

i
11Sρ

i or
∑

i ζ
i
1νSρ

i is much larger
than the other terms in

∑
i(η

i
1ν + ζ i

1ν )Sρ
i , so we replace∑

iνρ

mρ
1ν

(
ηi

1ν + ζ i
1ν

)
Sρ

i ≈
∑
iνρ

mρ
1νχ

i
1νSρ

i , (A23)

where χ i
1ν = ηi

11δ1ν or ζ i
1ν depending on whether we are considering recovery of sparse or dense patterns. These patterns with

significant overlaps are called condensed patterns.
We now invoke self-averaging over the i indices. For any function G(χ i, Si ),

TrS exp

[∑
i

G(χ i, Si )

]
=

∏
i

TrSi exp G(χ i, Si ) = exp

[∑
i

log TrSi exp G(χ i, Si )

]
= exp

[
N
〈
log TrS exp G(χ, S)

〉]
. (A24)

Now χ and S represent the pattern entry and activity of a single neuron. This single neuron is representative of the entire
network because pattern entries are generated independently for each neuron, so we can replace the average over neurons i with
an average over possible pattern entries χ . In doing so, we no longer need to pattern-average the trace of the exponential in
Eq. (A22); critically, that average has been subsumed by a pattern average inside the exponential, which allows us to write

〈Zn〉 ∝
∫ ⎡

⎣∏
νρ

dmρ
1ν

(
βN

2π

) 1
2

⎤
⎦

⎛
⎝∏

ρσ

dqρσ drρσ

⎞
⎠ exp(−βN f ), (A25)

where

f = 1

2

∑
νρ

(
mρ

1ν

)2 + α

2β
Tr log{δνωδρσ − β�2[(1 − κ2)δνω + κ2]qρσ } + βα

2

∑
ρσ

qρσ rρσ

− 1

β

〈
log TrS exp

{
β

[∑
νρ

mρ
1νχ1νSρ −

(
θ + αs�2

2

)∑
ρ

Sρ + βα

2

∑
ρσ

rρσ SρSσ

]}〉
. (A26)
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The replica partition function is now written in a form amenable to the saddle-point approximation. That is, in the N → ∞
limit, we can replace integrals in Eq. (A25) with the integrand evaluated where derivatives of f with respect to the variables of
integration equal 0.

4. Saddle-point equations for interpretation

Before proceeding with further simplifying f by invoking replica symmetry, we seek to obtain physical interpretations for m,
q, and r, which will serve as the order parameters of our system. To do so, we must recall several previously derived forms of
the replica partition function and apply the saddle-point conditions to them.

Recall Eqs. (A17) and (A20) obtained after introducing q and r but before integrating over the uncondensed patterns. Using
those expressions in the partition function and performing self-averaging similarly to above, we can obtain

〈Zn〉 ∝
∫ ⎡

⎣∏
μνρ

dmρ
μν

(
βN

2π

) 1
2

⎤
⎦

⎛
⎝∏

ρσ

dqρσ drρσ

⎞
⎠ exp(−βN f ), (A27)

where

f = 1

2

∑
μνρ

(
mρ

μν

)2 − β�2

2

∑
μ>1
νωρσ

[(1 − κ2)δνω + κ2]qρσ mρ
μνmσ

μω + βα

2

∑
ρσ

qρσ rρσ

− 1

β

〈
log TrS exp

{
β

[∑
νρ

mρ
1νχ1νSρ −

(
θ + αs�2

2

)∑
ρ

Sρ + βα

2

∑
ρσ

rρσ SρSσ

]}〉

= 1

2

∑
μνρ

(
mρ

μν

)2 − β�2

2

∑
μ>1
νωρσ

[(1 − κ2)δνω + κ2]qρσ mρ
μνmσ

μω + βα

2

∑
ρσ

qρσ rρσ − 1

β
〈log TrS exp[−βH]〉 (A28)

and

H ≡ −
∑
νρ

mρ
1νχ1νSρ +

(
θ + αs�2

2

)∑
ρ

Sρ − βα

2

∑
ρσ

rρσ SρSσ (A29)

is the effective single-neuron Hamiltonian across replicas.
At the saddle point, derivatives of f with respect to variables of integration are 0, so

0 = ∂ f

∂mρ
1ν

= mρ
1ν −

〈
TrS χ1νSρ exp(−βH)

TrS exp(−βH)

〉

⇒ mρ
1ν = 〈χ1νSρ〉, (A30)

0 = ∂ f

∂rρσ
= βα

2
qρσ − βα

2

〈
TrS SρSσ exp(−βH)

TrS exp(−βH)

〉

⇒ qρσ = 〈SρSσ 〉 =
{

〈SρSσ 〉 ρ �= σ

〈Sρ〉 ρ = σ
, (A31)

0 = ∂ f

∂qρσ
= βα

2
rρσ − β

2

∑
μ>1
νω

�2[(1 − κ2)δνω + κ2]mρ
μνmσ

μω

⇒ rρσ = 1

α

∑
μ>1
νω

�2[(1 − κ2)δνω + κ2]mρ
μνmσ

μω. (A32)

Bars over variables represent the thermodynamic ensemble average. Thus, mρ
1ν is the overlap of the network with the condensed

pattern to be recovered, qρσ is the Edwards-Anderson order parameter reflecting the overall neural activity, and rρσ represents
interference from network overlap with uncondensed patterns mρ

μν .
To explicitly see that mρ

μν describes the overlap of the network with uncondensed patterns for μ > 1, recall Eq. (A11) obtained
before introducing q and r. By introducing χ and performing self-averaging similarly to above, we can obtain

〈Zn〉 =
∫ [∏

μνρ

dmρ
μν

(
βN

2π

) 1
2
]

exp(−βN f ), (A33)
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where

f = 1

2

∑
μνρ

(
mρ

μν

)2 − 1

β

 

log TrS exp

⎧⎪⎪⎨
⎪⎪⎩β

⎡
⎢⎢⎣∑

νρ

mρ
1νχ1νSρ −

(
θ + αs�2

2

)∑
ρ

Sρ +
∑
μ>1
νρ

mρ
μν (ημν + ζμν )Sρ

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭

!

= 1

2

∑
μνρ

(
mρ

μν

)2 − 1

β
〈log TrS exp[−βH]〉, (A34)

and

H ≡ −
∑
νρ

mρ
1νχ1νSρ +

(
θ + αs�2

2

)∑
ρ

Sρ −
∑
μ>1
νρ

mρ
μν (ημν + ζμν )Sρ (A35)

is the effective single-neuron Hamiltonian. At the saddle point, this Hamiltonian is equivalent to the form in Eq. (A29) due to
Eqs. (A17) and (A32). The saddle-point condition applied to Eqs. (A33) and (A34) yields

0 = ∂ f

∂mρ
μν

= mρ
μν −

〈
TrS (ημν + ζμν )Sρ exp(−βH)

TrS exp(−βH)

〉

⇒ mρ
μν = 〈(ημν + ζμν )Sρ〉 for μ > 1. (A36)

Thus mρ
μν is indeed the network overlap with ημν + ζμν for μ > 1. As asserted ex ante to derive Eq. (A15), we expect it to be

small.

5. Replica-symmetry ansatz

We are now finished with seeking physical interpretations for order parameters, and we return to the primary task of
calculating the free energy Eq. (A7) using Eqs. (A25) and (A26). To do so, we assume replica symmetry:

mρ
μν = mμν, qρσ = q, qρρ = q0, rρσ = r, rρρ = r0. (A37)

Our expression for f then becomes

f = 1

2
n
∑

ν

(m1ν )2 + α

2β
Tr log{δνωδρσ − β�2[(1 − κ2)δνω + κ2][(q0 − q)δρσ + q]} + βαn

2
q0r0 + βαn(n − 1)

2
qr

− 1

β

�

log TrS exp

⎧⎪⎨
⎪⎩β

⎡
⎢⎣
(∑

ν

m1νχ1ν − θ − αs�2

2
+ βα

2
(r0 − r)

)∑
ρ

Sρ + βα

2
r

⎛
⎝∑

ρ

Sρ

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭
�

. (A38)

The eigenvalues of a constant n × n matrix with entries A are nA with multiplicity 1 and 0 with multiplicity n − 1. Thus, the
second term in Eq. (A38) under the limit in Eq. (A7) becomes

lim
n→0

1

n
Tr log{δνωδρσ − β�2[(1 − κ2)δνω + κ2][(q0 − q)δρσ + q]}

= lim
n→0

1

n
{log[1 − β�2(1 + sκ2 − κ2)(q0 − q + nq)] + (n − 1) log[1 − β�2(1 + sκ2 − κ2)(q0 − q)]

+ (s − 1) log[1 − β�2(1 − κ2)(q0 − q + nq)] + (s − 1)(n − 1) log[1 − β�2(1 − κ2)(q0 − q)]}

= (s − 1)

{
log[1 − Q(1 − κ2)] − βq�2(1 − κ2)

1 − Q(1 − κ2)

}
+ log[1 − Q(1 + sκ2 − κ2)] − βq�2(1 + sκ2 − κ2)

1 − Q(1 + sκ2 − κ2)
,

≡ �[q, q0], (A39)

where

Q ≡ β(q0 − q)�2. (A40)
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To evaluate the last term in Eq. (A38), we can use another Gaussian integral [Eq. (A10)] to perform the trace over S in the
limit n → 0:�

log TrS exp

⎧⎪⎨
⎪⎩β

⎡
⎢⎣
(∑

ν

m1νχ1ν − θ − αs�2

2
+ βα

2
(r0 − r)

)∑
ρ

Sρ + βα

2
r

⎛
⎝∑

ρ

Sρ

⎞
⎠

2
⎤
⎥⎦
⎫⎪⎬
⎪⎭
�

=
˝

log TrS

∫
dz√
2π

e−z2/2 exp

⎧⎨
⎩β

⎡
⎣(∑

ν

m1νχ1ν − θ + βα

2
(r0 − r) − αs�2

2
+ √

αrz

)∑
ρ

Sρ

⎤
⎦
⎫⎬
⎭
˛

=
〈

log
∫

dz√
2π

e−z2/2

{
1 + exp

[
β

(∑
ν

m1νχ1ν − θ + βα

2
(r0 − r) − αs�2

2
+ √

αrz

)]}n〉

≈
〈

log
∫

dz√
2π

e−z2/2

(
1 + n log

{
1 + exp

[
β

(∑
ν

m1νχ1ν − θ + βα

2
(r0 − r) − αs�2

2
+ √

αrz

)])}〉

≈ n

〈∫
dz√
2π

e−z2/2 log

{
1 + exp

[
β

(∑
ν

m1νχ1ν − θ + βα

2
(r0 − r) − αs�2

2
+ √

αrz

)]}〉
. (A41)

The free energy Eq. (A7) under replica symmetry becomes

F

N
= 1

2

∑
ν

(m1ν )2 + α

2β
�[q, q0] + βα

2
(q0r0 − qr)

− 1

β

〈〈
log

{
1 + exp

[
β

(∑
ν

m1νχ1ν − θ + βα

2
(r0 − r) − αs�2

2
+ √

αrz

)]}〉〉
, (A42)

where now the double angle brackets indicate an average over χ1ν as well as the Gaussian variable z.

6. Mean-field equations

We can now minimize this free energy over the order parameters by setting derivatives of F to zero, which yields the mean-
field equations. This step is equivalent to applying the saddle-point approximation to replica-symmetric f in the n → 0 limit.
We first note that

∂�

∂q
= (s − 1)

β2q�4(1 − κ2)2

[1 − Q(1 − κ2)]2
+ β2q�4(1 + sκ2 − κ2)2

[1 − Q(1 + sκ2 − κ2)]2
. (A43)

The combined fraction has numerator β2q�4 multiplied by

(s − 1){(1 − κ2)[1 − Q(1 + sκ2 − κ2)]}2 + {(1 + sκ2 − κ2)[1 − Q(1 − κ2)]}2

= s[1 − Q(1 − κ2)(1 + sκ2 − κ2)]2 + s(s − 1)κ4. (A44)

Meanwhile,

∂�

∂q0
= (s − 1)

[
− β�2(1 − κ2)

1 − Q(1 − κ2)
− β2q�4(1 − κ2)2

[1 − Q(1 − κ2)]2

]
− β(1 + sκ2 − κ2)

1 − Q(1 + sκ2 − κ2)
− β2q�4(1 + sκ2 − κ2)2

[1 − Q(1 + sκ2 − κ2)]2

= −∂�

∂q
− β�2

[
(s − 1)(1 − κ2)

1 − Q(1 − κ2)
+ 1 + sκ2 − κ2

1 − Q(1 + sκ2 − κ2)

]
. (A45)

The combined fraction inside the square brackets has numerator

(s − 1)(1 − κ2)[1 − Q(1 + sκ2 − κ2)] + (1 + sκ2 − κ2)[1 − Q(1 − κ2)] = s[1 − Q(1 − κ2)(1 + sκ2 − κ2)]. (A46)

Thus, derivatives of F with respect to the order parameters are

0 = ∂F

∂q
= α

2β

{
β2qs�4 [1 − Q(1 − κ2)(1 + sκ2 − κ2)]2 + (s − 1)κ4

[1 − Q(1 − κ2)]2[1 − Q(1 + sκ2 − κ2)]2

}
− βα

2
r

⇒ r = qs�4 [1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2
, (A47)
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0 = ∂F

∂q0
= α

2β

{
−∂�

∂q
− βs�2 1 − Q(1 − κ2)(1 + sκ2 − κ2)

[1 − Q(1 − κ2)][1 − Q(1 + sκ2 − κ2)]

}
+ βα

2
r0

⇒ r0 = r + s�2

β

1 − Q(1 − κ2)(1 + s0κ
2)

[1 − Q(1 − κ2)][1 − Q(1 + s0κ2)]
, (A48)

0 = ∂F

∂m1ν

= m1ν − 〈〈χ1ν sig[βh]〉〉
⇒ m1ν = 〈〈χ1ν sig[βh]〉〉 , (A49)

where sig(x) ≡ 1/(1 + e−x ) and

s0 ≡ s − 1, h ≡
∑

ν

m1νχ1ν − θ + βα

2
(r0 − r) − αs�2

2
+ √

αrz. (A50)

h is the local field under the mean-field approximation. We can simplify it via

βα

2
(r0 − r) − αs�2

2
= αs�2

2

1 − Q(1 − κ2)(1 + s0κ
2) − [1 − Q(1 − κ2)][1 − Q(1 + s0κ

2)]

[1 − Q(1 − κ2)][1 − Q(1 + s0κ2)]

= Qαs�2

2

1 + s0κ
4 − Q(1 − κ2)(1 + s0κ

2)

[1 − Q(1 − κ2)][1 − Q(1 + s0κ2)]
. (A51)

Thus,

h =
∑

ν

m1νχ1ν − φ + √
αrz, φ ≡ θ − Qαs�2

2

1 + s0κ
4 − Q(1 − κ2)(1 + s0κ

2)

[1 − Q(1 − κ2)][1 − Q(1 + s0κ2)]
(A52)

where φ is the shifted threshold; we shall see that in retrieval regimes, it is almost identical to θ .
Continuing, and using the identities

∫
dz e−z2/2z f (z) = ∫

dz e−z2/2 df (z)/dz and d sig(x)/dx = sig(x) − sig(x)2,

0 = ∂F

∂r
= −βα

2
q −

√
α

2
√

r
〈〈z sig[βh]〉〉 + βα

2
〈〈sig[βh]〉〉

⇒ q = 〈〈sig[βh]2〉〉, (A53)

0 = ∂F

∂r0
= βα

2
q0 − βα

2
〈〈sig[βh]〉〉

⇒ q0 = 〈〈sig[βh]〉〉. (A54)

Thus, we recover the mean-field equations presented in Eq. (11).

7. Zero-temperature limit

From now on, we consider only the T = 0 limit with β → ∞. In this limit,∫
dz√
2π

e−z2/2 sig[β(Az + B)] ≈
∫

dz√
2π

e−z2/2 �[Az + B] = 1

2

(
1 + erf

B√
2A

)
, (A55)

where � is the Heaviside step function and erf is the error function. Thus, Eqs. (A49), (A53), and (A47) become

m1ν ≈
〈〈

χ1ν �

[∑
ν

m1νχ1ν − φ + √
αrz

]〉〉
= 1

2

〈
χ1ν erf

∑
ν m1νχ1ν − φ√

2αr

〉
, (A56)

q ≈
〈〈

�

[∑
ν

m1νχ1ν − φ + √
αrz

]2〉〉
= 1

2

[
1 +

〈
erf

∑
ν m1νχ1ν − φ√

2αr

〉]
, (A57)

r ≈ s�4

2

[1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2

[
1 +

〈
erf

∑
ν m1νχ1ν − φ√

2αr

〉]
. (A58)

Here single angle brackets again indicate an average over χ1ν , with the average over z performed. The formula for m1ν was
obtained using 〈χ1ν〉 = 0 for both sparse and dense patterns.
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Also when β → ∞,∫
dz√
2π

e−z2/2{sig[β(Az + B)] − sig[β(Az + B)]2}

=
∫

dz√
2πβA

e−z2/2 ∂

∂z
sig[β(Az + B)]

≈
∫

dz√
2πβA

e−z2/2 ∂

∂z
�[Az + B] =

∫
dz√
2πβ

e−z2/2δ[Az + B] = 1√
2πβ|A|e−B2/2A2

. (A59)

We use this identity to simplify Eq. (A40) via Eqs. (A53) and (A54):

Q ≈ �2

〈〈
δ

[∑
ν

m1νχ1ν − φ + √
αrz

]〉〉
= �2

√
2παr

〈
exp

[
−

(∑
ν m1νχ1ν − φ

)2

2αr

]〉
. (A60)

Eqs. (A56), (A58), and (A60) are the zero-temperature mean-field equations connecting the order parameters m1ν , r, and Q (we
no longer need q, q0, and r0). All further derivations will start with these equations.

APPENDIX B: CAPACITY FOR SPARSE EXAMPLES

1. Sparse mean-field equations

The mean-field equations Eqs. (A56), (A58), and (A60) involve a generic target pattern χ1ν . We now consider the case where
the network recovers a sparse example, so χ1ν = η11δ1ν . Using this expression, we can simplify the mean-field equations and
find the critical example load sc above which sparse examples can no longer be retrieved. In this section, we take the sparse limit
with a � 1.

For convenience, we rename m ≡ m11 and η ≡ η11. From Eq. (A2), we have

η =
{

(1 − 2γ )(1 − a) with probability a

−(1 − 2γ )a with probability 1 − a
≈

{
1 − 2γ with probability a

0 with probability 1
. (B1)

Then, Eqs. (A56), (A58), and (A60) become

m = 1

2

〈
η erf

mη − φ

2αr

〉
= (1 − 2γ )a

2

[
erf

φ√
2αr

+ erf
(1 − 2γ )m − φ√

2αr

]
, (B2)

r = s�4

2

[1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2

[
1 +

〈
erf

mη − φ√
2αr

〉]

= s�4

2

[1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2

[
1 − erf

φ√
2αr

+ a erf
(1 − 2γ )m − φ√

2αr

]
, (B3)

Q = �2

√
2παr

〈
exp

[
− (mη − φ)2

2αr

] 〉
= �2

√
2παr

{
exp

[
− φ2

2αr

]
+ a exp

[
− [(1 − 2γ )m − φ]2

2αr

]}
. (B4)

We will soon see that these equations yield Q � 1 in the retrieval regime. In that case,

m = (1 − 2γ )a

2

{
erf

φ√
2αr

+ erf
(1 − 2γ )m − φ√

2αr

}
, (B5)

r = s(1 + s0κ
4)�4

2

{
1 − erf

φ√
2αr

+ a erf
(1 − 2γ )m − φ√

2αr

}
. (B6)

These mean-field equations for sparse examples are presented
in Eq. (13) with m replaced by its original name m11. They can
be numerically solved to find regimes of successful retrieval,
but we will analyze them further in search of formulas for the
capacity sc.

In the limit that the network only stores sparse patterns
with 2γ = 0, these mean-field equations simplify to those
of the sparse Hopfield network [7]. Note that their error
function obeys erf x → −1 as x → ∞, which is commonly
called the complementary error function. To match our equa-
tions to theirs, make the replacements γ → 0, �2 → a(1 −
a), s → 1, and erf x → 1 − erf x in our equations, and elimi-
nate higher orders of a � 1.

Instead of invoking this limit to match the equations ex-
actly, we can rewrite the mean-field equations Eqs. (B5) and
(B6) in the form of Ref. [7] with the rescalings

m = (1 − 2γ )am′,

φ = (1 − 2γ )2aθ ′,

r = s(1 + s0κ
4)�4r′,

α = (1 − 2γ )4a2

s(1 + s0κ4)�4
α′. (B7)
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Then

m′ = 1

2

(
erf

θ ′
√

2α′r′ + erf
m′ − θ ′
√

2α′r′

)
, (B8)

r′ = 1

2

(
1 − erf

θ ′
√

2α′r′ + a erf
m′ − θ ′
√

2α′r′

)
. (B9)

Successful retrieval means that m′ ≈ 1, which requires
θ ′/

√
2α′r′  1 and (m′ − θ ′)/

√
2α′r′  1. Under these lim-

its, 0 < θ ′ < 1 and Q � 1, which validates our previous
assumption. We can use asymptotic forms of the error function
to obtain

m′ = 1 − 1√
2π

√
α′r′

θ ′ e−θ ′2/2α′r′

− 1√
2π

√
α′r′

m′ − θ ′ e
−(m′−θ ′ )2/2α′r′

, (B10)

r′ = 1√
2π

√
α′r′

θ ′ e−θ ′2/2α′r′ + a

2

− a√
2π

√
α′r′

m′ − θ ′ e
−(m′−θ ′ )2/2α′r′

. (B11)

2. Capacity formula for θ′ → 0

To derive capacity formulas, we need to make further as-
sumptions about θ ′. First, we consider small θ ′. Because we
still require m′ ≈ 1, the third term in Eq. (B11) becomes much
smaller than the first, so

r′ ≈ 1√
2π

√
α′r′

θ ′ e−θ ′2/2α′r′ + a

2
. (B12)

This equation no longer depends on m′. If we take y ≡
θ ′/

√
α′r′  1, it becomes

θ ′2

α′ = 1√
2π

ye−y2/2 + a

2
y2. (B13)

The capacity is the maximum example load s for which this
equation still admits a solution. Note that s is proportional to
α′ according to Eq. (B7). Thus, we maximize α′ by minimiz-
ing the right-hand side of Eq. (B13) over y:

0 = 1√
2π

(1 − y2)e−y2/2 + ay,

ye−y2/2 ≈
√

2πa,

y =
√

−W−1(−2πa2) ≈
√

2| log a|, (B14)

where W−1 is the negative branch of the Lambert W function,
which is also known as the product logarithm. Substituting
Eq. (B14) back into Eq. (B13), we obtain the maximal value

α′
c ∼ θ ′2

a| log a| . (B15)

This expression implicitly defines the capacity sc for θ ′ → 0.

We can use this expression to obtain critical values for m′
c

and r′
c:

m′
c ≈ 1 − 1

2
√

π | log a|
θ ′

1 − θ ′ a
(1−θ ′ )2/θ ′2

, (B16)

r′
c ≈ a

2
. (B17)

Note that m′
c ≈ 1, which confirms that our solution is self-

consistent.

3. Capacity formula for θ′ → 1

Next, we derive a capacity formula for large θ ′. In this case,
Eqs. (B10) and (B11) become

m′ = 1 − 1√
2π

√
α′r′

m′ − θ ′ e
−(m′−θ ′ )2/2α′r′

(B18)

r′ = a

2
− a√

2π

√
α′r′

m′ − θ ′ e
−(m′−θ ′ )2/2α′r′

, (B19)

which yields

r′ = a

2
− a(1 − m′) ≈ a

2
. (B20)

If we define y ≡ (m′ − θ ′)/
√

α′r′  1 and use Eq. (B20), we
can write Eq. (B18) as

√
aα′

2
= 1 − θ ′

y
− 1√

2πy2
e−y2/2. (B21)

Again, the example load s is proportional to α′ [Eq. (B7)],
so we maximize α′ by maximizing the right-hand size of
Eq. (B21) with respect to y:

0 = −1 − θ ′

y2
+ 1√

2π

(
2

y3
+ 1

y

)
e−y2/2,

ye−y2/2 ≈
√

2π (1 − θ ′),

y ≈
√

−W−1[−2π (1 − θ ′)2] ≈
√

2| log(1 − θ ′)|.
(B22)

Substituting Eq. (B22) into Eq. (B21), we obtain

α′
c ∼ (1 − θ ′)2

a| log(1 − θ ′)| . (B23)

This expression implicitly defines the capacity sc for
θ ′ → 1.

Similarly to before, we use this expression to obtain the
critical value for m′

c:

m′
c ≈ 1 − 1 − θ ′

y2
= 1 − 1 − θ ′

2| log(1 − θ ′)| . (B24)

m′
c ≈ 1, which confirms that our solution was obtained self-

consistently.
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4. Maximizing capacity over θ′

We have derived two expressions for α′
c, which is propor-

tional to the capacity sc, in different regimes of the rescaled
threshold θ ′:

α′
c ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ ′2

a| log a| θ ′ → 0,

(1 − θ ′)2

a| log(1 − θ ′)| θ ′ → 1.

(B25)

We now take θ ′ to be a free parameter and maximize the
capacity over it. The first expression for α′

c grows from 0
as θ ′ increases from 0, and the second one grows from 0
as θ ′ decreases from 1. Thus, the optimum value should lie
somewhere in between, and we estimate its location by finding
the crossover point where the two expressions meet.

We assume that θ ′ is sufficiently far from 1 such that
| log(1 − θ ′)| ∼ 1. Then the crossover point is given by

θ ′2

a| log a| ≈ (1 − θ ′)2

a
,

θ ′ =
√| log a|

1 + √| log a| . (B26)

Substituting this optimal threshold back into Eq. (B25), we
obtain

α′
c ∼ 1

a| log a| . (B27)

By converting α′ back to α with Eq. (B7), we recover the
capacity formula Eq. (20) at optimal threshold.

APPENDIX C: CAPACITY FOR DENSE EXAMPLES

1. Dense asymmetric mean-field equations

We return to the generic mean-field Eqs. (A56), (A58),
and (A60) and consider the case where the network recovers
a dense example ζ11. Due to correlations, the network will
overlap with all dense patterns ζ1ν , so χ1ν = ζ1ν . Using this
expression, we can simplify the mean-field equations and find
the critical example load sc above which dense examples can
no longer be retrieved.

Recall from Eq. (A2) that

ζ1ν =
{

ζ1 with probability 1+c
2

−ζ1 with probability 1−c
2

,

ζ1 =
{

γ with probability 1
2

−γ with probability 1
2

. (C1)

To help us in our calculations, we note the integrals∫ ∞

−∞
dx e−(x−A)2/ρ2

e−(x−B)2/σ 2 =
√

π

ρ−2 + σ−2
exp

[
− (A − B)2

ρ2 + σ 2

]
,

∫ ∞

−∞
dx e−(x−A)2/ρ2

erf

[
x − B

σ

]
= √

πρ erf

[
A − B√
ρ2 + σ 2

]
,

∫ ∞

−∞
dx e−(x−A)2/ρ2

x erf

[
x − B

σ

]
= ρ

{
ρ2√

ρ2 + σ 2
exp

[
− (A − B)2

ρ2 + σ 2

]
+ √

πA erf

[
A − B√
ρ2 + σ 2

]}
. (C2)

During successful retrieval, the network overlaps strongly with the target pattern ζ11. It will also overlap with other examples
ζ1ν for ν > 1 to a degree governed by the correlation parameter c [Eq. (A3)]. As N → ∞, these other overlaps converge towards
one another due to the law of large numbers; we call this asymptotic value m0 ≡ m1ν for ν > 1. Thus, we can write∑

ν

m1νζ1ν = m11ζ11 + m0

∑
ν>1

ζ1ν = mζ + s0m0x0. (C3)

We rename m ≡ m11 and ζ ≡ ζ11 for convenience. x0 is the average over the s0 = s − 1 other examples in concept 1, and it
follows a binomial distribution with mean cζ1 and variance γ 2(1 − c2)/s0 according to Eq. (C1). In the large s limit, it can
be approximated by a Gaussian random variable with the same central moments. We also introduce m1, which is the network
overlap with the concept pattern ζ1.

With these considerations, Eqs. (A56), (A58), and (A60) yield

m = 1

2

〈〈
ζ erf

mζ + s0m0x0 − φ√
2αr

〉〉
, (C4)

m0 = 1

2

〈〈
x0 erf

mζ + s0m0x0 − φ√
2αr

〉〉
, (C5)

m1 = 1

2

〈〈
ζ1 erf

mζ + s0m0x0 − φ√
2αr

〉〉
, (C6)
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r = s�4

2

[1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2

[
1 +

〈〈
erf

mζ + s0m0x0 − φ√
2αr

〉〉]
, (C7)

Q = �2

√
2παr

〈〈
exp

[
− (mζ + s0m0x0 − φ)2

2αr

] 〉〉
. (C8)

The double angle brackets indicate averages over ζ and x0, which is a Gaussian random variable with mean and variance listed
above. We define the following variables:

σ 2
0 ≡ s0γ

2(1 − c2)m2
0 + αr,

Y±± ≡ γ m ± s0γ cm0 ± φ√
2σ0

, (C9)

with choices for + and − in Y±± corresponding to signs in the right-hand side. Now we come to the task of performing the
averages in Eqs. (C4)–(C8). For each variable, we average successively over ζ , x0, and ζ1.

First,

Q = �2

√
2παr

{
1 + c

2

〈〈
exp

[
− (mζ1 + s0m0x0 − φ)2

2αr

] 〉〉
+ 1 − c

2

〈〈
exp

[
− (mζ1 − s0m0x0 + φ)2

2αr

] 〉〉}
. (C10)

Then,

1√
2παr

〈〈
exp

[
− (mζ1 + s0m0x0 − φ)2

2αr

] 〉〉

= 1√
2παr

√
s0

2πγ 2(1 − c2)

〈 ∫
dx0 e−s0(x0−cζ1 )2/2γ 2(1−c2 )e−s2

0m2
0[x0+(mζ1−φ)/s0m0]2/2αr

〉

= 1√
2π

[
s0γ 2(1 − c2)m2

0 + αr
]
〈

exp

[
− (mζ1 + s0cm0ζ1 − φ)2

2
[
s0γ 2(1 − c2)m2

0 + αr
]
]〉

= 1√
2πσ0

1

2

(
e−Y 2

++ + e−Y 2
+−

)
. (C11)

Thus,

Q = �2

√
2πσ0

[
1 + c

4

(
e−Y 2

++ + e−Y 2
+−

) + 1 − c

4

(
e−Y 2

−+ + e−Y 2
−−

)]
. (C12)

Next, 〈〈
erf

mζ + s0m0x0 − φ√
2αr

〉〉
=

{
1 + c

2

〈〈
erf

mζ1 + s0m0x0 − φ

2αr

〉〉
− 1 − c

2

〈〈
erf

mζ1 − s0m0x0 + φ

2αr

〉〉}
. (C13)

Then, 〈〈
erf

mζ1 + s0m0x0 − φ

2αr

〉〉
=

√
s0

2πγ 2(1 − c2)

〈∫
dx0 e−s0(x0−cζ1 )2/2γ 2(1−c2 ) erf

[
s0m0√

2αr

(
x0 + mζ1 − φ

s0m0

)]〉

=
〈

erf
mζ1 + s0cm0ζ1 − φ√

2
(
s0γ 2(1 − c2)m2

0 + αr
)
〉

= −1

2
(erf Y++ − erf Y+−) . (C14)

Thus,

r = s�4

2

[1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2

[
1 − 1 + c

4
(erf Y++ − erf Y+−) − 1 − c

4
(erf Y−+ − erf Y−−)

]
. (C15)

Next,

m = 1

2

{
1 + c

2

〈〈
ζ1 erf

mζ1 + s0m0x0 − φ

2αr

〉〉
+ 1 − c

2

〈〈
ζ1 erf

mζ1 − s0m0x0 + φ

2αr

〉〉}
. (C16)
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Then, 〈〈
ζ1 erf

mζ1 + s0m0x0 − φ

2αr

〉〉
=

√
s0

2πγ 2(1 − c2)

〈
ζ1

∫
dx0 e−s0(x0−cζ1 )2/2γ 2(1−c2 ) erf

[
s0m0√

2αr

(
x0 + mζ1 − φ

s0m0

)]〉

=
〈
ζ1 erf

mζ1 + s0cm0ζ1 − φ√
2
(
s0γ 2(1 − c2)m2

0 + αr
)
〉

= γ

2
(erf Y++ + erf Y+−) . (C17)

Thus,

m = γ

2

[
1 + c

4
(erf Y++ + erf Y+−) + 1 − c

4
(erf Y−+ + erf Y−−)

]
. (C18)

Similarly,

m1 = 1

2

[
1 + c

2

〈〈
ζ1 erf

mζ1 + s0m0x0 − φ

2αr

〉〉
− 1 − c

2

〈〈
ζ1 erf

mζ1 − s0m0x0 + φ

2αr

〉〉]

= γ

2

[
1 + c

4
(erf Y++ + erf Y+−) − 1 − c

4
(erf Y−+ + erf Y−−)

]
. (C19)

Finally,

m0 = 1

2

[
1 + c

2

〈〈
x0 erf

mζ1 + s0m0x0 − φ

2αr

〉〉
− 1 − c

2

〈〈
x0 erf

mζ1 − s0m0x0 + φ

2αr

〉〉]
. (C20)

Then, 〈〈
x0 erf

mζ1 + s0m0x0 − φ√
2αr

〉〉
=

√
s0

2πγ 2(1 − c2)

〈∫
dx0 e−s0(x0−cζ1 )2/2γ 2(1−c2 )x0 erf

[
s0m0√

2αr

(
x0 + mζ1 − φ

s0m0

)]〉

= γ 2(1 − c2)m0

√
2

π
[
s0γ 2(1 − c2)m2

0 + αr
]
〈

exp

[
− (mζ1 + s0cm0ζ1 − φ)2

2
[
s0γ 2(1 − c2)m2

0 + αr
]
]〉

+ c

〈
ζ1 erf

mζ1 + s0cm0ζ1 − φ√
2
[
s0γ 2(1 − c2)m2

0 + αr
]
〉

= γ 2(1 − c2)m0√
2πσ0

(
e−Y 2

++ + e−Y 2
+−

) + γ c

2
(erf Y++ + erf Y+−). (C21)

Thus,

m0 = γ c

2

[
1 + c

4
(erf Y++ + erf Y+−) − 1 − c

4
(erf Y−+ + erf Y−−)

]
+ Q

γ 2

�2
(1 − c2)m0

= γ c

2
[
1 − Q γ 2

�2 (1 − c2)
]
[

1 + c

4
(erf Y++ + erf Y+−) − 1 − c

4
(erf Y−+ + erf Y−−)

]
. (C22)

These mean-field equations are presented in Eq. (14) with
m replaced by its original name m11. They can be numeri-
cally solved to find regimes of successful retrieval, but we
will analyze them further in search of a formula for the
capacity sc.

In the limit that the network only stores dense, uncor-
related patterns with 2γ = 1 and c = 0, these mean-field
equations simplify to those of the Hopfield network with
0/1 neurons [53], which has half the capacity of the original
Hopfield network with +1/−1 neurons. Note that the pattern
storage strength in Ref. [53] is twice that of ours; in other
words, their connectivity weights are scaled by a factor of 4
in comparison to ours. To match our equations to theirs, make

the replacements γ → 1, � → 1, s → 1, c → 0, and κ → 0
in our equations, and recall Eqs. (A47)–(A52).

2. Simplified mean-field equations

To derive a capacity formula, we make three further as-
sumptions. First, we assume c2 � 1, which implies κ2 � 1
as well. Second, we assume that the rescaled threshold φ = 0.
This assumption is justified empirically, for we find that the
capacity is maximized at |φ| < 10−6 over all parameter ranges
in Fig. 3. It is also justified theoretically, since we will derive
that Q � 1, which means φ ≈ θ . For dense patterns in classic
Hopfield network, retrieval is maximized at threshold θ = 0
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[21]. Finally, we assume s  1, so s0 = s; this is not neces-
sary, but it makes the expressions simpler.

We rescale the order parameters with

m = γ

2
m′,

m0 = γ

2
m′

0,

r = s�4

2
r′,

α = γ 4

2�4
α′. (C23)

The mean-field equations then become

m′ = 1 + c

2
erf Y ′

+ + 1 − c

2
erf Y ′

−, (C24)

m′
0 = c

1 − Q γ 2

�2

(
1 + c

2
erf Y ′

+ − 1 − c

2
erf Y ′

−

)
, (C25)

r′ = 1

(1 − Q)2
, (C26)

Q =
√

2

π

�2

σ ′
0γ

2

(
1 + c

2
e−(Y ′

+ )2 + 1 − c

2
e−(Y ′

− )2

)
, (C27)

where

σ ′
0

2 ≡ s
(
m′

0
2 + α′r′),

Y ′
± ≡ m′

√
2σ ′

0

(
1 ± scm′

0

m′

)
. (C28)

Successful retrieval means that m′ ≈ 1, which requires
Y ′

±  1. This condition in turn yields m′
0 ≈ c2 and Q � 1

through Eqs. (C25) and (C27), which confirms our previous
assumption. Thus, Y ′

± ≈ (y/
√

2)(1 ± sc3), where

y ≡ m′

σ ′
0

. (C29)

For Y ′
±  1, we need sc3 � 1 and y  1, which we use to

boldly simplify Eqs. (C24)–(C27):

m′ = 1 − 1

y2

√
2

π
ye−y2/2, (C30)

m′
0 = c2

1 − Q γ 2

�2

[
1 −

(
1

y2
− sc2

)√
2

π
ye−y2/2

]
, (C31)

α′ =
(

m′2

sy2
− m′

0
2

)
(1 − Q)2, (C32)

Q = �2

γ 2m′

(
1 − sc4y2 + 1

2
s2c6y4

)√
2

π
ye−y2/2. (C33)

For mathematical tractability, we have expanded in sc3 and
1/y, even though the former is not strictly small and the latter
can be empirically close to 1.

3. Capacity formula

In Eqs. (C30)–(C33), we substitute formulas for m′, m′
0,

and Q into the equation for α′ and keep only leading terms in

1/y and c. After much simplification, we obtain

s(α′ + c4) ≈ 1

y2
− �2

γ 2

(
1

y
+ 1

2
s2c6y3

)√
8

π
e−y2/2. (C34)

At the critical value of s above which Eq. (C34) equa-
tion cannot be satisfied by any y, derivatives with respect to
y on both sides of the equation must be equal. In other words,
we expect the critical sc to be a saddle-node bifurcation point.
For mathematical tractability, we ignore the term proportional
to s2. This simplification is rather arbitrary, but it can be
empirically justified by comparing the resulting formula with
numerical analysis of the full mean-field equations (Fig. 3).
We also eliminate higher orders in 1/y to obtain

0 ≈ − 2

y3
+ �2

γ 2

√
8

π
e−y2/2. (C35)

Solving for y, we obtain

y =
√

−3W−1

[
−1

3

(
π

2

)1/3(
γ

�

)4/3]

≈
√

3 log

[
3

(
2

π

)1/3(
�

γ

)4/3]
, (C36)

where W−1 is the negative branch of the Lambert W function.
Since this function involves a logarithm, it varies very slowly
as a function of γ /�. For γ = 0.1 and a between 0.001 and
0.1, this expression for y ranges from 1.7 and 3.3. Within this
range, m′ > 0.88 according to Eq. (C30), which confirms that
our earlier simplifications using m′ ≈ 1 yield self-consistent
results.

We can use Eq. (C35) to simplify Eq. (C34) to leading
order in 1/y:

sc(α′ + c4) ≈ 1

y2
− s2

cc6. (C37)

Solving for sc,

sc =
√

(α′ + c4)2 + 4
y2 c6 − (α′ + c4)

2c6
. (C38)

To heuristically obtain a simpler equation, we note that sc →
1/yc3 when α′ → 0 and sc → 1/y2α′ when α′ → ∞. We
simply capture both these behaviors with

sc ∼ 1

yc3 + y2α′ . (C39)

Again, y varies slowly within its range, so we simplify this
equation by simply setting y ∼ 3. After converting α′ back to
α with Eq. (C23), we obtain Eq. (23).

APPENDIX D: CRITICAL LOAD FOR DENSE CONCEPTS

1. Dense symmetric mean-field equations

We return to the generic mean-field equations Eqs. (A56),
(A58), and (A60) and consider the case where the network
recovers a dense concept ζ1. Due to correlations, the network
will overlap with all dense patterns ζ1ν , so χ1ν = ζ1ν . Using
this expression, we can simplify the mean-field equations and
find the critical example load sc below which dense concepts
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cannot be retrieved. Recall the dense pattern statistics Eq. (C1)
and Gaussian integrals Eq. (C2), which will aid us in our
derivations.

Successful retrieval means that the network overlaps
strongly with the target concept ζ1. The correlation parameter
c produces overlaps with all example patterns ζ1ν [Eq. (A3)],
which converge to an asymptotic value ms ≡ m1ν as N → ∞.
The “s” signifies “symmetric,” i.e., equal overlap with all
examples in concept 1. Thus, we can write∑

ν

m1νζ1ν = ms

∑
ν

ζ1ν = smsxs. (D1)

xs is the average over the s examples in concept 1, and it
follows a binomial distribution with mean cζ1 and variance
γ 2(1 − c2)/s according to Eq. (C1). In the large s limit, it
can be approximated by a Gaussian random variable with the
same central moments. We explicitly introduce m1, which is
the network overlap with the target concept ζ1.

With these considerations, Eqs. (A56), (A58), and (A60)
yield

ms = 1

2

〈〈
xs erf

smsxs − φ√
2αr

〉〉
, (D2)

m1 = 1

2

〈〈
ζ1 erf

smsxs − φ√
2αr

〉〉
, (D3)

r = s�4

2

[1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2

×
[

1 +
〈〈

erf
smsxs − φ√

2αr

〉〉]
, (D4)

Q = �2

√
2παr

〈〈
exp

[
− (smsxs − φ)2

2αr

] 〉〉
. (D5)

The double angle brackets indicate averages over ζ and xs,
which is a Gaussian random variable with mean and variance
listed above. We define the following variables:

σ 2
s ≡ sγ 2(1 − c2)m2

s + αr,

Y± ≡ sγ cms ± φ√
2σs

, (D6)

with choices for + and − in Y± corresponding the sign in the
right-hand side. Now we come to the task of performing the
averages in Eqs. (D2)–(D5). For each variable, we average
successively over xs and ζ1.

First,

Q = �2

√
2παr

〈〈
exp

[
− (smsxs − φ)2

2αr

] 〉〉

= �2

√
2παr

√
s

2πγ 2(1 − c2)

〈 ∫
dxs e−s(xs−cζ1 )2/2γ 2(1−c2 )e−s2m2

s (xs−φ/sms )2/2αr

〉

= �2√
2π

[
sγ 2(1 − c2)m2

s + αr
]
〈

exp

{
− (scmsζ1 − φ)2

2
[
sγ 2(1 − c2)m2

s + αr
]
} 〉

= �2

√
8πσs

(
e−Y 2

+ + e−Y 2
−
)
. (D7)

Next, 〈〈
erf

smsxs − φ√
2αr

〉〉
=

√
s

2πγ 2(1 − c2)

〈∫
dxs e−s(xs−cζ1 )2/2γ 2(1−c2 ) erf

[
sms√
2αr

(
xs − φ

sms

)]〉

=
〈

erf
scmsζ1 − φ√

2
[
sγ 2(1 − c2)m2

s + αr
]
〉

= −1

2
(erf Y+ − erf Y−) . (D8)

Thus,

r = s�4

2

[1 − Q(1 − κ2)(1 + s0κ
2)]2 + s0κ

4

[1 − Q(1 − κ2)]2[1 − Q(1 + s0κ2)]2

[
1 − 1

2

(
erf Y+ − erf Y−

)]
. (D9)

Next,

m1 = 1

2

〈〈
ζ1 erf

smsxs − φ

2αr

〉〉

= 1

2

√
s

2πγ 2(1 − c2)

〈
ζ1

∫
dxs e−s(xs−cζ1 )2/2γ 2(1−c2 ) erf

[
sms√
2αr

(
xs − φ

sms

)]〉

= 1

2

〈
ζ1 erf

scmsζ1 − φ√
2
[
sγ 2(1 − c2)m2

s + αr
]
〉

= γ

4
(erf Y+ + erf Y−) . (D10)
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FIG. 9. (a) Critical example load sc for dense concepts obtained through numerical analysis of Eq. (16). We either set φ = 0 (dark, thin
lines) or maximize over φ (light, thick lines). (b) Right-hand side of Eq. (D17) and its terms plotted separately. We use a = 0.1, c = 0.1,
α = 10−4, and s = sc = 929. (c) y as a function of α for density a = 0 obtained by numerically solving Eq. (D20). For all results, γ = 0.1.

Finally,

ms = 1

2

〈〈
xs erf

smsxs − φ

2αr

〉〉

= 1

2

√
s

2πγ 2(1 − c2)

〈∫
dxs e−s(xs−cζ1 )2/2γ 2(1−c2 )xs erf

[
sms√
2αr

(
xs − φ

sms

)]〉

= γ 2(1 − c2)ms

2

√
2

π
[
sγ 2(1 − c2)m2

s + αr
]〈 exp

{
− (scmsζ1 − φ)2

2
[
sγ 2(1 − c2)m2

s + αr
]
} 〉

+ c

2

〈
ζ1 erf

scmsζ1 − φ√
2
[
sγ 2(1 − c2)m2

s + αr
]
〉

= Q
γ 2

�2
(1 − c2)ms + γ c

4
(erf Y+ + erf Y−)

= γ c

4
[
1 − Q γ 2

�2 (1 − c2)
] (erf Y+ + erf Y−) . (D11)

These mean-field equations are presented in Eq. (16).

2. Simplified mean-field equations

To derive a formula for the critical example load sc, we make three further assumptions. First, we assume c2 � 1, which
implies κ2 � 1 as well. Second, we assume that rescaled threshold φ = 0. This assumption is justified empirically. We find
that sc is minimized at |φ| < 0.5 over all parameter ranges in Fig. 4; moreover, these values are very close to that obtained by
enforcing φ = 0 [Fig. 9(a)]. Finally, we assume s  1, so s0 = s; this is not necessary, but it makes the expressions simpler.

We rescale the order parameters with

ms = γ c

2
m′

s, r = s�4

2
(m′

s)2r′, α = γ 4c2

2�4
α′. (D12)

We also define

y ≡
√

sc2

1 + α′r′ , (D13)

so Y± ≈ y/
√

2. The mean-field equations then become

m′
s − Qm′

s
γ 2

�2
= erf

y√
2
, (D14)

1

α′

(
sc2

y2
− 1

)
= [m′

s − Qm′
s(1 + sκ2)]2 + (m′

s)2sκ4

(m′
s − Qm′

s)2[m′
s − Qm′

s(1 + sκ2)]2
, (D15)

Qm′
s = �2

γ 2sc2

√
2

π
ye−y2/2. (D16)
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We can now substitute expressions for m′
s and Qm′

s into Eq. (D15) to obtain

0 = 1

α′

(
sc2

y2
− 1

)[
erf y√

2
− (1 − 2γ )2a(1 − a)

γ 2sc2

√
2
π

ye−y2/2

]2

− 1 − sκ4

(
erf y√

2
+ 1

sc2

√
2
π

ye−y2/2
)2

[
erf y√

2
− ( (1−2γ )2a(1−a)

γ 2sc2 + 1
)√

2
π

ye−y2/2
]2

. (D17)

At the critical value of s above which Eq. (D17) equation cannot be satisfied by any y, its derivative with respect to y must be 0.
In other words, we expect the critical sc to be a saddle-node bifurcation point.

3. Critical load relations for a � γ2

To derive formulas for sc, we need to make further assumptions about a. First, we consider the case where a is not too small.
In Fig. 9(b) we plot the right-hand side (r.h.s.) of Eq. (D17), along with its first two terms and third term separately. The first
two terms generally capture the behavior of the r.h.s. The third term contributes a pole, whose location approximately sets the
position of the local maximum of the r.h.s. where its derivative equals 0. Thus, we use the first two terms to satisfy Eq. (D17)
and the denominator of the third term to satisfy its derivative:

α′ ≈
(

scc2

y2
− 1

)[
erf

y√
2

− (1 − 2γ )2a(1 − a)

γ 2scc2

√
2

π
ye−y2/2

]2

,

0 ≈ erf
y√
2

−
[

(1 − 2γ )2a(1 − a)

γ 2scc2
+ 1

]√
2

π
ye−y2/2. (D18)

We can manipulate these equations to obtain Eq. (24) if we convert α′ back to α with Eq. (D12).

4. Critical load formula for a � γ2

Next we consider a → 0. In this case, the second equation of Eq. (D18) implies y → 0, which does not correspond to a
retrieval solution m′

s ≈ 1 according to Eq. (D14). Thus the pole location cannot be used to satisfy the derivative of Eq. (D17). To
proceed, we instead set a = 0 in Eq. (D17) and obtain

0 = 1

α′

(
sc2

y2
− 1

)(
erf

y√
2

)2
(

erf
y√
2

−
√

2

π
ye−y2/2

)2

−
(

erf
y√
2

−
√

2

π
ye−y2/2

)2

− sc4

(
erf

y√
2

+ 1

sc2

√
2

π
ye−y2/2

)2

.

(D19)

We then directly calculate its derivative with respect to y. Along with Eq. (D19) without taking the derivative, this gives

α′ =
( scc2

y2 − 1
)(

erf y√
2

)2(
erf y√

2
−

√
2
π

ye−y2/2
)2

(
erf y√

2
−

√
2
π

ye−y2/2
)2 + scc4

(
erf y√

2
+ 1

scc2

√
2
π

ye−y2/2
)2

,

α′c2 =
erf y√

2

[ scc2

y2

(
erf y√

2
−

√
2
π

ye−y2/2
) +

√
2
π

ye−y2/2
](

erf y√
2

−
√

2
π

ye−y2/2
)3

(scc2 + 1)
√

2
π

ye−y2/2
(
erf y√

2
+ 1

scc2

√
2
π

ye−y2/2
)[

(y2 − 1) erf y√
2

+
√

2
π

ye−y2/2
] . (D20)

To find a formula for sc, we boldly expand these equations in leading powers of y while preserving extra powers of c4.
By solving Eq. (D20) numerically, we see that y ∼ 1, so this simplification is not strictly valid [Fig. 9(b)]; nevertheless, our
ultimately derived formula matches reasonably well with numerical results [Fig. 4(e)]. The equations become

α′ ≈ 2scc2y4[3scc2 − (3 + scc2)y2]

3π [scc2y4 + 9c2(1 + scc2)2]
, α′c2 ≈ scc2(3 + scc2)y6

27π (1 + scc2)2
. (D21)

Equating these two expressions for α′, we get

scc2(3 + scc2)y6 + 27(1 + scc2)2(3 + scc2)c2y2 = 54scc2(1 + scc2)2c2. (D22)

We can solve this equation for y using the cubic formula to obtain

y2 = (
√

A3 + B2 + B)1/3 − (
√

A3 + B2 − B)1/3, where A = 9(1 + scc2)2c2

scc2
, B = 27(1 + scc2)2c2

3 + scc2
. (D23)

Substituting this expression into Eq. (D21), we find an equation for α′ in terms of sc:

α′ = scc2

πB
{2B − 3A[(

√
A3 + B2 + B)1/3 − (

√
A3 + B2 − B)1/3]}. (D24)
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Finally, we can solve for sc as a series in α′. We keep only the leading term in α′ and the leading term in c to obtain

sc ≈ 3

(
3π

8

)1/4 (α′)1/4

c3/2
+ 3π

8

α′

c2
. (D25)

This yields Eq. (25) if we convert α′ back to α with Eq. (D12).
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