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Abstract

A central function of continuous attractor networks is encoding coordinates and accurately

updating their values through path integration. To do so, these networks produce localized

bumps of activity that move coherently in response to velocity inputs. In the brain, continu-

ous attractors are believed to underlie grid cells and head direction cells, which maintain

periodic representations of position and orientation, respectively. These representations

can be achieved with any number of activity bumps, and the consequences of having more

or fewer bumps are unclear. We address this knowledge gap by constructing 1D ring

attractor networks with different bump numbers and characterizing their responses to three

types of noise: fluctuating inputs, spiking noise, and deviations in connectivity away from

ideal attractor configurations. Across all three types, networks with more bumps experience

less noise-driven deviations in bump motion. This translates to more robust encodings of lin-

ear coordinates, like position, assuming that each neuron represents a fixed length no mat-

ter the bump number. Alternatively, we consider encoding a circular coordinate, like

orientation, such that the network distance between adjacent bumps always maps onto 360

degrees. Under this mapping, bump number does not significantly affect the amount of error

in the coordinate readout. Our simulation results are intuitively explained and quantitatively

matched by a unified theory for path integration and noise in multi-bump networks. Thus, to

suppress the effects of biologically relevant noise, continuous attractor networks can employ

more bumps when encoding linear coordinates; this advantage disappears when encoding

circular coordinates. Our findings provide motivation for multiple bumps in the mammalian

grid network.

Author summary

Our brains maintain an internal sense of location and direction so we can, for example,

find our way to the door if the lights go off. A class of neural circuits called continuous

attractor networks is believed to be responsible for this ability. These circuits must be

resilient against the myriad forms of imperfections and random fluctuations present in

the brain, which can degrade the accuracy of their encoded information. We have
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discovered a new way in which continuous attractor networks can improve their robust-

ness to noise: they should distribute their activity among multiple regions in the network,

called bumps, instead of concentrating it in a single bump. Bump number is a fundamen-

tal feature of continuous attractor networks, but its connection to error suppression has

never been appreciated. A recent experiment in rodents suggests that one such network

indeed contains multiple regions of activity; our finding provides motivation for why such

a configuration may have been evolved.

Introduction

Continuous attractor networks (CANs) sustain a set of activity patterns that can be smoothly

morphed from one to another along a low-dimensional manifold [1–3]. Network activity is

typically localized into attractor bumps, whose positions along the manifold can represent the

value of a continuous variable. These positions can be set by external stimuli, and their persis-

tence serves as a memory of the stimulus value. Certain CAN architectures are also capable of

a feature called path integration. Instead of receiving the stimulus value directly, the network

receives its changes and integrates over them by synchronously moving the attractor bump

[4–6]. Path integration allows systems to estimate an external state based on internally per-

ceived changes, which is useful in the absence of ground truth.

Path-integrating CANs have been proposed as a mechanism through which brains encode

various physical coordinates. Head direction cells in mammals and compass neurons in insects

encode spatial orientation by preferentially firing when the animal faces a particular direction

relative to landmarks (Fig 1A, top; Refs [7] and [8]). They achieve this as members of 1D

CANs whose attractor manifolds have ring topologies [9, 10]. For the case of compass neurons,

Fig 1. Continuous attractor networks with any number of bumps can produce head direction cells and grid cells. (A) Desired tuning curves of

a head direction cell and a 1D grid cell. (B) Orientation and position coordinates whose changes drive bump motion. (C) One- and two-bump ring

attractor networks. Each black neuron produces the desired tuning curves in A. In the two-bump network, the coupling to coordinate changes is

half as strong, and the second bump is labeled for clarity.

https://doi.org/10.1371/journal.pcbi.1010547.g001
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a ring structure also exists anatomically, and its demonstration of continuous attractor dynam-

ics is well-established [8, 11–13]. Grid cells in mammals encode position by preferentially fir-

ing at locations that form a triangular lattice in 2D space (1D analogue in Fig 1A, bottom; Ref

[14]). They are thought to form a 2D CAN with toroidal topology [15–18], and mounting

experimental evidence supports this theory [19–22]. The ability for head direction cells, com-

pass neurons, and grid cells to maintain their tunings in darkness without external cues dem-

onstrates that these CANs can path integrate [8, 14, 23].

CANs also appear in studies of other brain regions and neural populations. Signatures of

continuous attractor dynamics have been detected in the prefrontal cortex during spatial

working memory tasks [24–26]. Theorists have further invoked CANs to explain place cells

[27, 28], hippocampal view cells [29], eye tracking [4, 6], visual orientation tuning [30, 31], and

perceptual decision making [32, 33]. Thus, CANs are a crucial circuit motif throughout the

brain, and better understanding their performance would provide meaningful insights into

neural computation.

One factor that strongly affects the performance of CANs in path integration is biological

noise. To accurately represent physical coordinates, attractor bumps must move in precise syn-

chrony with the animal’s trajectory. Hence, the bump velocity must remain proportional to

the driving input that represents coordinate changes [18]. Different sources of noise produce

different types of deviations from this exact relationship, all of which lead to path integration

errors. While noisy path-integrating CANs have been previously studied [10, 18, 34, 35], these

works did not investigate of role of bump number. CANs with different connectivities can pro-

duce different numbers of attractor bumps, which are equally spaced throughout the network

and perform path integration by moving in unison [16, 18, 36]. Two networks with different

bump numbers have the same representational capability (Fig 1). They can share the same

attractor manifold and produce neurons with identical tuning curves, as long as the coupling

strength between bump motion and driving input scales appropriately. The computational

advantages of having more or fewer bumps are unknown.

Our aim is to elucidate the relationship between bump number and robustness to noise.

We first develop a rigorous theoretical framework for studying 1D CANs that path integrate

and contain multiple bumps. Our theory predicts the number, shape, and speed of bumps. We

then introduce three forms of noise. The first is Gaussian noise added to the total synaptic

input, which can represent fluctuations in a broad range of cellular processes occurring at

short timescales. The second is Poisson spiking noise. The third is noise in synaptic connectiv-

ity strengths; the ability for bumps to respond readily to driving inputs is generally conferred

by a precise network architecture. We add Gaussian noise to the ideal connectivity and evalu-

ate path integration in this setting. The first two forms of noise are independent over time and

neurons, in contrast to the third. We find that networks with more bumps can better resist all

three forms of noise under certain encoding assumptions. These observations are explained by

our theoretical framework with simple scaling arguments. The following Results section pres-

ents all simulation findings and major theoretical conclusions; complete theoretical deriva-

tions are found in the Theoretical model section.

Results

Bump formation in a ring attractor network

We study a 1D ring attractor network that extends the model of Ref [37] to allow for multiple

attractor bumps. It contains two neural populations α 2 {L, R} at each network position x,

with N neurons in each population (Fig 2A). Each neuron is described by its total synaptic
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input g that obeys the following dynamics:

t
dgaðx; tÞ
dt

þ gaðx; tÞ ¼
X

b

Z

dyWbðx; yÞsbðy; tÞ þ A�a gbðtÞ þ zaðx; tÞ; ð1Þ

where ±L means − and ±R means +. Aside from spiking simulations, firing rates s are given by

saðx; tÞ ¼ �½gaðx; tÞ�; ð2Þ

where ϕ is a nonlinear activation function. For all simulations in this Results section, we take ϕ
to be the rectified linear unit (ReLU) activation function (Eq 35). Our theoretical formulas for

diffusion coefficients and velocities in this section also assume a ReLU ϕ. In S1 Text, we con-

sider a logistic ϕ instead and find that all major conclusions are preserved (Fig A in S1 Text),

and in the Theoretical methods section, we derive most expressions for general ϕ. W is the syn-

aptic connectivity and only depends on the presynaptic population β. It obeys a standard con-

tinuous attractor architecture based on local inhibition that is strongest at an inhibition

distance l. Each population has its synaptic outputs shifted by a small distance ξ� l in opposite

directions. We use the connectivity profile described in Fig 2B and Eq 38 for all simulations,

but all theoretical expressions in this Results section are valid for any W. A is the resting input

to all neurons. The driving input, or drive, b is proportional to changes in the coordinate

encoded by the network; for the physical coordinates in Fig 1B, it represents the animal’s

velocity obtained from self-motion cues. In our results, b is constant in time. It is coupled to

the network with strength γ. We will consider various forms of noise z. Finally, τ is the neural

time constant.

Fig 2. Bump formation in a ring attractor network. (A) Network schematic with populations L and R and locally inhibitory connectivity W. (B and C)

Networks with 200 neurons and 3 bumps. (B) Connectivity weights for a neuron at the origin. The inhibition distance is l = 29 and the connectivity shift is ξ
= 2. (C) Steady-state synaptic inputs. Curves for both populations lie over each other. With a ReLU activation function, the firing rates follow the solid

portions of the colored lines and are 0 over the dashed portions. The bump distance is λ = 200/3. Thick gray line indicates Eq 4. (D and E) Networks with 500

neurons. (D) More bumps and shorter bump distances are produced by smaller inhibition distances. Points indicate data from 10 replicate simulations. Line

indicates Eq 5. (E) The inhibition distance l = 55 corresponds to the black point in D with λ = 125 and M = 4. These values also minimize the Lyapunov

functional (Eq 6), which varies smoothly across λ for infinite networks (line) and takes discrete values for finite networks (points). (F) The scaled bump

shape remains invariant across network sizes and bump numbers, accomplished by rescaling connectivity strengths according to Eq 7. Curves for different

parameters lie over one another.

https://doi.org/10.1371/journal.pcbi.1010547.g002
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With no drive b = 0 and no noise z = 0, the network dynamics in Eqs 1 and 2 can be simpli-

fied to

t
dgðx; tÞ
dt

þ gðx; tÞ ¼ 2

Z

dyWðx � yÞ�½gðy; tÞ� þ A; ð3Þ

where 2W(x − y) = ∑β Wβ(x, y) and the synaptic inputs g are equal between the two popula-

tions. This baseline equation evolves towards a periodic steady-state g with approximate form

(see also Ref [38]).

gðxÞ ¼ a cos
2pðx � x0Þ

l
þ d: ð4Þ

Expressions for a and d are given in the Theoretical model section (Eq 60). The firing rates

s(x) = ϕ[g(x)] exhibit attractor bumps with periodicity λ, a free parameter that we call the

bump distance (Fig 2C). x0 is the arbitrary position of one of the bumps. It parameterizes the

attractor manifold with each value corresponding to a different attractor state up to λ.

The bump number M = N/λ is determined through λ. It can be predicted by the fastest-

growing mode in a linearized version of the dynamics (Eq 43; Refs [39] and [40]). The mode

with wavenumber q and corresponding wavelength 2π/q grows at rate ð2 ~WðqÞ � 1Þ=t, where

~WðqÞ is the Fourier transform of W(x). Thus,

2p

l
¼ argmax

q

~WðqÞ: ð5Þ

Fig 2D shows that simulations follow the predicted λ and M over various inhibition dis-

tances l. Occasionally for small l, a different mode with a slightly different wavelength will

grow quickly enough to dominate the network. A periodic network enforces an integer bump

number, which discretizes the allowable wavelengths and prevents changes in λ and M once

they are established. In an aperiodic or infinite system, the wavelength can smoothly vary from

an initial value to a preferred length over the course of a simulation [18, 41]. To determine this

preferred λ theoretically, we notice that the nonlinear dynamics in Eq 3 obey the Lyapunov

functional

L ¼ �
Z Z

dx dyWðx � yÞsðxÞsðyÞ þ
Z

dx
Z sðxÞ

0

dr�� 1
½r� � A

Z

dx sðxÞ: ð6Þ

In the Theoretical model section, we find for ReLU ϕ that L is minimized when q = 2π/λ
maximizes ~WðqÞ (Eq 66). This is the same condition as for the fastest-growing mode in Eq 5

(Fig 2E). In other words, the wavelength λ most likely to be established in a periodic network

is the preferred bump distance in an aperiodic or infinite system, up to a difference of one

fewer or extra bump due to discretization.

We now understand how to produce different bump numbers M in networks of different

sizes N by adjusting the inhibition distance l. To compare networks across different values of

M and N, we scale the connectivity strength W according to

Wbðx; yÞ /
M
N
: ð7Þ

This keeps the total connectivity strength per neuron
R

dxWβ(x, y) constant over M and N.

In doing so, the shape of each attractor bump as a function of scaled network position x/λ
remains invariant (Fig 2F). Thus, Eq 7 removes additional variations in bump shape and helps

to isolate our comparisons across M and N to those variables themselves. In S1 Text, we
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consider the alternative without this scaling and find that many major results are preserved

(Fig B in S1 Text).

Bump dynamics: Path integration and diffusion

The drive b produces coherent bump motion by creating an imbalance between the two neural

populations. A positive b increases input to the R population and decreases input to the L pop-

ulation (Fig 3A). Because the synaptic outputs of the former are shifted to the right, the bump

moves in that direction. Similarly, a negative b produces leftward bump motion. The bump

velocity vdrive can be calculated in terms of the baseline firing rates s(x) obtained without drive

and noise (see also Refs [37] and [42]):

vdrive ¼ �
gbx

Z

dx
d2s
dx2

t

Z

dx
ds
dx

� �2 : ð8Þ

Fig 3. Dynamics in a ring attractor network. (A–C) Networks with 200 neurons and 3 bumps. (A) Synaptic inputs for populations L and R under

drive b = 2. Snapshots taken at 150 ms intervals demonstrate rightward motion. (B) Bump velocity is proportional to drive. The connectivity shift is

ξ = 2. (C) Bump velocity is largely proportional to connectivity shift. The drive is b = 0.5. (D–H) Networks with synaptic input noise. (D) Bump

displacements for 48 replicate simulations demonstrating diffusion with respect to coherent motion. Networks with 200 neurons and 1 bump. (E

and F) Mean bump velocity is proportional to drive and remains largely independent of network size, bump number, and noise magnitude. (G and

H) Bump diffusion coefficient scales quadratically with noise magnitude, remains largely independent of drive, and varies with network size and

bump number. The noise magnitude is σ = 0.5 in D, E, and G, and the drive is b = 0.5 in D, F, and H. Values for both bumps in two-bump networks

lie over each other. Points indicate data from 48 replicate simulations and bars indicate bootstrapped standard deviations. Dotted gray lines indicate

Eqs 8 and 10.

https://doi.org/10.1371/journal.pcbi.1010547.g003
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As a note, these integrals, as well as subsequent ones, do not include the singular points at

the edges of attractor bumps. Eq 8 states that bump velocity is proportional to drive b and con-

nectivity shift ξ, which is reflected in our simulations, with some deviation at larger ξ (Fig 3B

and 3C). The strict proportionality between v and b is crucial because it implies faithful path

integration [18]. If b(t) represents coordinate changes (such as angular or linear velocity in Fig

1B), then the bump position θ(t) will accurately track the coordinate itself (orientation or

position).

In contrast to drive, uncorrelated noise z produces bump diffusion. To illustrate this effect,

we introduce one form of z that we call synaptic input noise. Suppose z is independently sam-

pled for each neuron at each simulation timestep from a Gaussian distribution with mean 0

and variance σ2. Loosely, it can arise from applying the central limit theorem to the multitude

of noisy synaptic and cellular processes occurring at short timescales. Then,

hzaðx; tÞi ¼ 0; hzaðx; tÞzbðy; t0Þi ¼ s2Dt dðt � t0Þdabdðx � yÞ; ð9Þ

where the timestep Δt sets the resampling rate of z, and angle brackets indicate averaging over

an ensemble of replicate simulations. Input noise causes bumps to diffuse away from the

coherent driven motion (Fig 3D). The mean velocity hvi remains proportional to drive b,

which means that the network still path integrates on average (Fig 3E). Since hvi is largely

independent of noise magnitude σ, and the bump diffusion coefficient D is largely independent

of b, drive and input noise do not significantly interact within the explored parameter range

(Fig 3F and 3G). D can be calculated in terms of the baseline firing rates (see also Refs [35] and

[43]):

Dinput ¼
s2Dt

4t2

Z

dx
ds
dx

� �2 :
ð10Þ

The quadratic dependence of D on σ is confirmed by simulation (Fig 3H).

We now turn our attention to bump number M and network size N. The mean bump veloc-

ity hvi is independent of these parameters (Fig 3E and 3F), which can be understood theoreti-

cally. Bump shapes across M and N are simple rescalings of one another (Fig 2F), so

derivatives of s with respect to x are simply proportional to M (more bumps imply faster

changes) and inversely proportional to N (larger networks imply slower changes). Similarly,

integrals of expressions containing s over x are simply proportional to N. In summary,

ds
dx
/

M
N
;

d2s
dx2
/

M2

N2
;

Z

dx / N: ð11Þ

Applying these scalings to Eq 8, we indeed expect vdrive to be independent of M and N. In

contrast, Fig 3G and 3H reveal that the diffusion coefficient D varies with these parameters.

When a one-bump network is increased in size from 200 to 400 neurons, D increases as well,

which implies greater path integration errors. This undesired effect can be counteracted by

increasing the bump number from 1 to 2, which lowers D below that of the one-bump network

with 200 neurons. These initial results suggest that bump number and network size are impor-

tant factors in determining a CAN’s resilience to noise. We will explore this idea in greater

detail.
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Mapping network coordinates onto physical coordinates

Before further comparing networks with different bump numbers M and sizes N, we should

scrutinize the relationship between bump motion and the physical coordinate encoded by the

network. After all, the latter is typically more important in biological settings. First, we con-

sider the trivial case in which each neuron represents a fixed physical interval across all M and

N; this is equivalent to using network coordinates without a physical mapping (Fig 4A). It is

suited for encoding linear variables like position that lack intrinsic periodicity, so larger net-

works can encode wider coordinate ranges. However, with more bumps or fewer neurons, the

range over which the network can uniquely encode different coordinates is shortened. We

assume that ambiguity among coordinates encoded by each bump can be resolved by addi-

tional cues, such as local features, that identify the true value among the possibilities [44–46];

this process will be examined in detail below. We leave quantities with dimensions of network

distance in natural units of neurons.

Multi-bump networks are intrinsically periodic, especially those with a ring architecture. A

natural way for them to encode a circular coordinate like orientation would be to match net-

work and physical periodicities. For example, the bump distance may always represent

360˚across different M and N so that neurons always exhibit unimodal tuning (Fig 4B). This

relationship implies that quantities with dimensions of network distance should be multiplied

by powers of the conversion factor

360� �M
N

; ð12Þ

which converts units of neurons to degrees. In other words, circular mapping implies normal-

izing network distances by the bump distance λ = N/M.

For circular mapping, we must also ensure that networks with different bump numbers M
and sizes N path integrate consistently with one another. The same drive b should produce the

same bump velocity v in units of degree/s. To do so, we rescale the coupling strength γ only

under circular mapping:

g /
N
M
: ð13Þ

Fig 4. Possible mappings between network coordinates and two types of physical coordinates. (A) In networks

encoding linear coordinates such as position, one neuron always represents a fixed physical interval. This mapping is

trivial and identical to using network coordinates. (B) In networks encoding circular coordinates such as orientation, the

bump distance always represents 360˚.

https://doi.org/10.1371/journal.pcbi.1010547.g004
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This effectively compensates for the factor of M/N in Eq 12. To see this explicitly, recall

that vdrive does not depend on M and N in units of neuron/s, as shown in Fig 3E and 3F and

previously explained through scaling arguments. Under circular mapping, vdrive would be

multiplied by one power of the conversion factor in Eq 12. Since its formula contains γ in

the numerator (Eq 8), vdrive receives an additional power of the rescaling factor in Eq 13.

The two factors cancel each other, so vdrive does not depend on M and N under either

mapping:

vdrive / 1 linear; vdrive / 1 circular: ð14Þ

Thus, a consistent relationship between b and vdrive is preserved in units of both neurons/s

and degrees/s.

Of course, there are other possible mappings between network and physical coordinates

across bump numbers and network sizes. For example, intermediate scalings can be achieved

with the conversion factor (M/N)μ for 0< μ< 1 instead of Eq 12, with the corresponding γ/
(N/M)μ instead of Eq 13. But for the rest of our paper, we will consider the linear and circular

cases, which correspond to μ = 0 and μ = 1, respectively. To be clear, networks with the same

ring architecture are used for both mappings. We will see how noise affects encoding quality

in either case.

More bumps improve robustness to input and spiking noise under linear

mapping

We now revisit the effect of input noise on bump diffusion, as initially explored in Fig 3D–3H.

We measure how the diffusion coefficient D varies with bump number M and network size N
under linear and circular mappings. Under linear mapping, D decreases as a function of M but

increases as a function of N (Fig 5A and 5B). Thus, more bumps attenuate diffusion produced

by input noise, which is especially prominent in large networks. However, for circular coordi-

nates, D remains largely constant with respect to M and decreases with respect to N (Fig 5A

and 5B). Increasing the number of bumps provides no benefit. These results can be understood

through Eqs 10, 11 and 12, which predict

Dinput /
N
M2

linear; Dinput /
1

N
circular: ð15Þ

Two powers of the conversion factor in Eq 12 account for the differences between the two

mappings.

Next, we investigate networks with spiking noise instead of input noise. To do so, we

replace the deterministic formula for firing rate in Eq 2 with

saðx; tÞ ¼
caðx; tÞ
Dt

: ð16Þ

Here, s is a stochastic, instantaneous firing rate given by the number of spikes c emitted in a

simulation timestep divided by the timestep duration Δt. We take the c’s to be independent

Poisson random variables driven by the deterministic firing rate:

caðx; tÞ � Pois½�½gaðx; tÞ�Dt�: ð17Þ
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As fully explained in the Theoretical model section (Eq 99), we can approximate this spik-

ing process by the rate-based dynamics in Eqs 1 and 2 with the noise term

zaðx; tÞ ¼
X

b

Z

dyWbðx; yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�½gbðy; tÞ�
Dt

s

Zbðy; tÞ: ð18Þ

The η’s are independent random variables with zero mean and unit variance:

hZaðx; tÞi ¼ 0; hZaðx; tÞZbðy; t0Þi ¼ Dt dðt � t0Þdabdðx � yÞ: ð19Þ

As for Eq 9, the simulation timestep Δt sets the rate at which η is resampled. This spiking

noise produces bump diffusion with coefficient (see also Ref [43])

Dspike ¼

Z

dx sðxÞ
ds
dx

� �2

4t2

Z

dx
ds
dx

� �2
" #2

: ð20Þ

As before, s is the baseline firing rate configuration without noise and drive. Through the

relationships in Eqs 11 and 12, Dspike scales with M and N in the same way as Dinput does:

Dspike /
N
M2

linear; Dspike /
1

N
circular: ð21Þ

These findings are presented in Fig 5C and 5D along with simulation results that confirm

our theory. Spiking noise behaves similarly to input noise. Increasing bump number improves

robustness to noise under linear mapping but has almost no effect under circular mapping.

Bump diffusion in larger networks is exacerbated under linear mapping but suppressed under

Fig 5. Bump diffusion due to input and spiking noise. (A, B) Networks with synaptic input noise of magnitude σ =

0.5 and drive b = 0.5. Dotted gray lines indicate Eq 10. (A) Diffusion decreases with bump number under linear

mapping and remains largely constant under circular mapping. Networks with 600 neurons. (B) Diffusion increases

with network size under linear mapping and decreases under circular mapping. Networks with 3 bumps. (C and D)

Same as A and B, but for networks with Poisson spiking noise instead of input noise. Dotted gray lines indicate Eq 20.

Points indicate data from 48 replicate simulations and bars indicate bootstrapped standard deviations.

https://doi.org/10.1371/journal.pcbi.1010547.g005
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circular mapping. For both input noise and spiking noise, the conversion factor in Eq 12 pro-

duces the differences between the two mappings. Coupling strength rescaling in Eq 13 does

not play a role because γ does not appear in Eqs 10 and 20. In S1 Text, we consider splitting a

large network with many bumps into smaller networks, each with fewer bumps; the intact net-

work and the combined readout of the split networks exhibit similar diffusion properties.

To evaluate noise robustness in a complementary way, we perform mutual information

analysis of networks with input noise. Mutual information describes how knowledge of one

random variable can reduce the uncertainty in another, and it serves as a general metric for

encoding quality. Before proceeding, we mention a related quantity called Fisher information,

which is directly related to mutual information [47, 48] and inversely related to bump diffu-

sion in CANs [43]. Thus, we expect that networks with less diffusion in Fig 5 should generally

contain more mutual information about their encoded coordinate. Fisher information also

permits a more intuitive explanation for our diffusion scalings. It is proportional to network

size N [43], because monitoring a larger number of noisy neurons tells us more about the

encoded coordinate. Otherwise, it only depends on the tuning curves of neurons within the

network; in particular, steeper tuning curves convey quadratically more information [43]. For

our networks, across M and N, linear tuning curves are simple rescalings of each other with

derivative inversely proportional to λ = N/M, while circular tuning curves remain unimodal

and identical (Figs 2F and 4). Thus, Fisher information should be proportional to N ⋅ (M/N)2

and N for linear and circular coordinates, respectively. Applying the inverse proportionality

between Fisher information and diffusion coefficients discovered by Ref [43], we arrive at Eqs

15 and 21.

Using simulations, we investigate the mutual information I between the physical coordinate

encoded by the noisy network, represented by the random variable U with discretized sample

space U , and the activity of a single neuron, represented by the random variable S with discre-

tized sample space S (see Simulation methods):

I½S; U� ¼
X

s2S;u2U

pðsjuÞpðuÞlog
pðsjuÞ
pðsÞ

: ð22Þ

We then average I across neurons. Larger mean mutual information implies more precise

coordinate encoding and greater robustness to noise. Note that the joint activities of all the

neurons confer much more coordinate information than single-neuron activities do, but since

estimating high-dimensional probability distributions over the former is computationally very

costly, we use the latter as a metric for network performance.

The physical coordinate U is either position or orientation and obeys the mappings

described in Fig 4 across bump numbers M and network sizes N. To obtain the probability dis-

tributions in Eq 22 required to compute I, we initialize multiple replicate simulations at evenly

spaced coordinate values u (Fig 6A). We do not apply a driving input, so the networks should

still encode their initialized coordinates at the end of the simulation. However, they contain

input noise that degrades their encoding. Collecting the final firing rates produces p(s|u) for

each neuron. For both position and orientation, we consider narrow and wide coordinate

ranges to assess network performance in both regimes.

We first consider narrow coordinate ranges. For linear coordinates, information increases

as a function of M but decreases as a function of N; for circular coordinates, it does not

strongly depend on M and increases as a function of N (Fig 6B and 6C). These results exactly

corroborate those in Fig 5A and 5B obtained for bump diffusion, since we expect information

and diffusion to be inversely related.
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Fig 6. Mutual information between neural activity and physical coordinates with input noise of magnitude σ = 0.5. (A) To

compute mutual information, we initialize replicate simulations without input drive at different coordinate values (thick black

lines) and record the final neural activities (thin colored lines). The physical coordinate can be linear or circular and its range

can be narrow or wide; here, we illustrate two possibilities for networks with 600 neurons and 3 bumps. (B and C) Mutual

information between physical coordinate and single-neuron activity under narrow coordinate ranges. (B) Information increases

with bump number for linear coordinates and remains largely constant for circular coordinates. Networks with 600 neurons. (C)

Information decreases with network size for linear coordinates and increases for circular coordinates. Networks with 3 bumps.

(D and E) Mutual information between physical coordinate and single-neuron activity under wide coordinate ranges. The

trends in B and C are preserved for circular coordinates. They are also preserved for linear coordinates, except for the shaded

regions in which the coordinate range exceeds the bump distance. (F) Coarse local cues are active over different quadrants of the

wide coordinate ranges. (G and H) Mutual information between physical coordinate and the joint activities of a single neuron

with the four cues in F under wide coordinate ranges. The trends in B and C are preserved for both linear and circular

coordinates. Points indicate data from 96 replicate simulations at each coordinate value averaged over neurons and bars indicate

bootstrapped standard errors of the mean. Cue icons adapted from Streamline Freemoji (CC BY license, https://www.

streamlinehq.com/emojis/freebies-freemojis).

https://doi.org/10.1371/journal.pcbi.1010547.g006

PLOS COMPUTATIONAL BIOLOGY Multiple attractor bumps can enhance robustness to noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010547 October 10, 2022 12 / 38

https://www.streamlinehq.com/emojis/freebies-freemojis
https://www.streamlinehq.com/emojis/freebies-freemojis
https://doi.org/10.1371/journal.pcbi.1010547.g006
https://doi.org/10.1371/journal.pcbi.1010547


We next consider wide coordinate ranges. Our ring networks can only uniquely represent

coordinate ranges up to their bump distances (converted to physical distances by Fig 4).

Beyond these values, two physical coordinates separated by the converted bump distance can-

not be distinguished by the network. Our mutual information analysis captures this phenome-

non; for linear coordinates, the increase in information with larger M or smaller N as observed

in Fig 6B and 6C disappears once the converted bump distance drops below the physical range

of 200 cm (green shaded regions of Fig 6D and 6E). In this regime, the benefits of more bumps

and smaller networks toward decreasing diffusion are counteracted by bump ambiguity. In

contrast, the circular mapping in Fig 4 lacks bump ambiguity since the bump distance is always

converted to the maximum physical range of 360˚, so the same qualitative trends in mutual

information are observed for any coordinate range (Fig 6D and 6E).

For linear coordinates with wide ranges, the advantages of increasing bump number can be

restored by coarse local cues. We illustrate this process by introducing four cues, each of which

is active over a different quadrant and is otherwise inactive (Fig 6F). They can be conceptual-

ized as two-state sensory neurons or neural populations that fire in the presence of a local stim-

ulus. By themselves, the cues do not encode precise coordinate values. Mutual information

computed with the joint activity of each neuron with these cues recovers the behavior observed

for narrow ranges across all M and N (Fig 6G and 6H). Ring attractor neurons provide infor-

mation beyond the 2 bits conveyed by the cues alone, and for position, this additional informa-

tion increases with more bumps and fewer neurons without saturating.

In summary, our conclusions about robustness to input noise obtained by diffusion analysis

are also supported by mutual information analysis. Moreover, the latter explicitly reveals how

networks encoding wide, linear coordinate ranges can leverage coarse local cues to address

ambiguities and preserve the advantages of multiple bumps. In S1 Text, we calculate mutual

information for a few additional regimes (Fig C of S1 Text; see also Refs [49] and [50], which

investigated the Fisher information conveyed by multi-bump tuning curves).

More bumps improve robustness to connectivity noise under linear

mapping

Another source of noise in biological CANs is inhomogeneity in the connectivity W. Perfect

continuous attractor dynamics requires W to be invariant to translations along the network [9,

10, 16, 18, 28], a concept related to Goldstone’s theorem in physics [51, 52]. We consider the

effect of replacing W!W + V, where V is a noisy connectivity matrix whose entries are inde-

pendently drawn from a zero-mean Gaussian distribution. V disrupts the symmetries of W.

This noise is quenched and does not change over the course of the simulation, in contrast to

input and spiking noise, which are independently sampled in time. It contributes a noise term

zaðx; tÞ ¼
X

b

Z

dy Vabðx; yÞsbðy; tÞ: ð23Þ

This formula implies that V produces correlated z’s across neurons, which also differs from

input and spiking noise. Because of these distinctions, the dominant effect of connectivity

noise is not diffusion, but drift. V induces bumps to move with velocity vconn(θ), even without

drive b:

vconnðyÞ ¼ �

X

ab

Z Z

dx dy Vabðx; yÞ
dsðx � yÞ

dx
sðy � yÞ

2t

Z

dx
ds
dx

� �2 : ð24Þ
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The movement is coherent but irregular, as it depends on the bump position θ (Fig 7A).

Refs [53] and [54] refer to vconn(θ) as the drift velocity.

Connectivity noise traps bumps at low drive b. We first consider b = 0, so bump motion is

governed solely by drift according to dθ/dt = vconn(θ). The bump position θ has stable fixed

points wherever vconn(θ) crosses 0 with negative slope [53, 54]. Simulations confirm that

bumps drift towards these points (Fig 7B). The introduction of b adds a constant vdrive that

moves the curve in Fig 7A up for positive b or down for negative b:

vtotalðyÞ ¼ vdrive þ vconnðyÞ: ð25Þ

If vtotal(θ) still crosses 0, bumps would still be trapped. The absence of bump motion in

response to coordinate changes encoded by b would be a catastrophic failure of path integra-

tion. To permit bump motion through the entire network, the drive must be strong enough to

eliminate all zero-crossings. Fig 7C shows bump motion at this drive for both directions of

motion. The positive b is just large enough for the bump to pass through the region with the

most negative vconn(θ) in Fig 7A; likewise for negative b and positive vconn(θ). We call the

larger absolute value of these two drives the escape drive b0. Simulations show that b0 decreases

with bump number M and increases with network size N under linear mapping (Fig 7D and

7E). A smaller b0 implies weaker trapping, so smaller networks with more bumps are more

resilient against this phenomenon. Under circular mapping, however, b0 demonstrates no sig-

nificant dependence on M or N. We can predict b0 by inverting the relationship in Eq 8

Fig 7. Bump trapping due to connectivity noise at low drive. (A–C) Networks with 600 neurons, 1 bump, and the same realization of connectivity

noise of magnitude 0.002. (A) Theoretical values for drift velocity as a function of bump position using Eq 24. (B) Bumps drift towards trapped

positions over time. The drive is b = 0. Arrows indicate predictions from vconn(θ) crossing 0 with negative slope in A. Lines indicate simulations with

different starting positions. (C) Bump trajectories with smallest positive and negative drive required to travel through the entire network. Respectively,

b = 0.75 and b = −0.52. The larger of the two in magnitude is the escape drive b0 = 0.75. Note that positions with low bump speed exhibit large

velocities in the opposite direction in A. (D and E) Networks with multiple realizations of connectivity noise of magnitude 0.002. (D) Escape drive

decreases with bump number under linear mapping and remains largely constant under circular mapping. Networks with 600 neurons. (E) Escape

drive increases with network size under linear mapping and remains largely constant under circular mapping. Networks with 3 bumps. Points indicate

simulation means over 48 realizations and bars indicate standard deviations. Dotted gray lines indicate Eq 26 averaged over 96 realizations.

https://doi.org/10.1371/journal.pcbi.1010547.g007
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between b and v:

b0 ¼ �

max
y
jvconnðyÞj � t

Z

dx
ds
dx

� �2

gx

Z

dx
d2s
dx2

: ð26Þ

This theoretical result agrees well with values obtained by simulation (Fig 7D and 7E). In

the Theoretical model section, we present a heuristic argument (Eq 124) that leads to the

observed scaling of escape drive on M and N:

b0 /
N
M

linear; b0 / 1 circular: ð27Þ

At high drive |b| > b0, attractor bumps are no longer trapped by the drift velocity vconn(θ).

Instead, the drift term produces irregularities in the total velocity vtotal(θ) (Fig 8A). They can

be decomposed into two components: irregularities between directions of motion and irregu-

larities within each direction. Both imply errors in path integration because v and b are not

strictly proportional. To quantify these components, we call |v+(θ)| and |v−(θ)| the observed

bump speeds under positive and negative b. We define speed difference as the unsigned differ-

ence between mean speeds in either direction, normalized by the overall mean speed:

speed difference ¼
2 mean

y
jvþðyÞj � mean

y
jv� ðyÞj

�
�
�

�
�
�

mean
y
jvþðyÞj þmean

y
jv� ðyÞj

: ð28Þ

We then define speed variability as the standard deviation of speeds within each direction,

averaged over both directions and normalized by the overall mean speed:

speed variability ¼
std
y
jvþðyÞj þ std

y
jv� ðyÞj

mean
y
jvþðyÞj þmean

y
jv� ðyÞj

: ð29Þ

Speed difference and speed variability follow the same trends under changes in bump num-

ber M and network size N (Fig 8B–8E). Under linear mapping, they decrease with M and

increase with N. Under circular mapping, they do not significantly depend on M and N. These

are also the same trends exhibited by the escape drive b0 (Fig 7D and 7E). In terms of theoreti-

cal quantities, the formulas for speed difference and variability become

speed difference ¼
2 jmean

y
vconnðyÞj

jvdrivej
ð30Þ

and

speed variability ¼
std
y

vconnðyÞ

jvdrivej
: ð31Þ

These expressions match the observed values well (Fig 8B–8E). In the Theoretical methods

section, we calculate the observed dependence of speed difference (Eq 113) and variability (Eq
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120) on M and N:

speed difference and variability /
N
M

linear;

speed difference and variability / 1 circular:
ð32Þ

For all results related to connectivity noise, the coupling strength rescaling in Eq 13 pro-

duces the differences between the two mappings via the γ in Eq 8. The conversion factor in Eq

12 does not play a role because escape drive, speed difference, and speed variability do not

have dimensions of network distance.

To summarize, CANs with imperfect connectivity benefit from more attractor bumps when

encoding linear coordinates. This advantage is present at all driving inputs and may be more

crucial for larger networks. On the other hand, connectivity noise has largely the same conse-

quences for networks of all bump numbers and sizes when encoding circular coordinates.

Discussion

We demonstrated how CANs capable of path integration respond to three types of noise.

Additive synaptic input noise and Poisson spiking noise cause bumps to diffuse away from the

coherent motion responsible for path integration (Figs 3 and 5). This diffusion is accompanied

by a decrease in mutual information between neural activity and encoded coordinate (Fig 6).

Connectivity noise produces a drift velocity field that also impairs path integration by trapping

bumps at low drive and perturbing bump motion at high drive (Figs 7 and 8).

For all three types of noise, CANs with more attractor bumps exhibit less deviation in

bump motion in network units. This is observed across network parameters (Figs A and B in

Fig 8. Bump speed irregularity due to connectivity noise at high drive. (A) Bump speed as a function of bump position with connectivity

noise of magnitude 0.002 and drive b = 1.5. Network with 600 neurons, 1 bump, and the same realization of connectivity noise as in Fig 7A–

7C. Thick gray lines indicate Eq 25. (B–E) Networks with multiple realizations of connectivity noise of magnitude 0.002 and drive b = 1.5. (B)

Speed difference between directions decreases with bump number under linear mapping and remains largely constant under circular

mapping. Networks with 600 neurons. (C) Speed difference increases with network size under linear mapping and remains largely constant

under circular mapping. Networks with 3 bumps. (D and E) Same as B and C, but for speed variability within each direction. Points indicate

simulation means over 48 realizations and bars indicate standard deviations. Dotted gray lines indicate Eqs 30 and 31 averaged over 96

realizations.

https://doi.org/10.1371/journal.pcbi.1010547.g008
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S1 Text). Thus, they can more robustly encode linear variables whose mapping inherits net-

work units and does not rescale with bump number (Fig 4A). If grid cell networks were to

encode spatial position in this manner, then multiple attractor bumps would be preferred over

a single bump. Ref [20] reports experimental evidence supporting multi-bump grid networks

obtained by calcium imaging of mouse medial entorhinal cortex. Our work implies that the

evolution of such networks may have been partially encouraged by biological noise. Additional

bumps introduce greater ambiguity among positions encoded by each bump, but this can be

resolved by a rough estimate of position from additional cues, such as local landmarks [44, 55–

57], another grid module with different periodicity [15, 40, 41, 44, 46, 58], or a Bayesian prior

based on recent memory [45]. In this way, grid modules with finer resolution and more

attractor bumps could maintain a precise egocentric encoding of position, while coarser mod-

ules and occasional allocentric cues would identify the true position out of the few possibilities

represented. We explicitly explored one realization of this concept and observed how cues

enable networks to improve their information content by increasing bump number, despite a

concomitant increase in bump ambiguity (Fig 6F–6H).

In contrast, CANs encoding circular variables may rescale under different bump numbers

to match periodicities (Fig 4B), which eliminates any influence of bump number on encoding

accuracy for all three types of noise. If head direction networks were to encode orientation in

this manner, then they would face less selective pressure to evolve beyond the single-bump

configuration observed in Drosophila [8]. Moreover, without the assumption of bump shape

invariance accomplished by Eq 7, robustness to all three types of noise decreases with bump

number, which actively favors single-bump orientation networks (Fig B in S1 Text). Further

experimental characterization of bump number in biological CANs, perhaps through tech-

niques proposed by Ref [59], would test the degree to which the brain can leverage the theoret-

ical advantages identified in this work.

Under linear mapping, larger CANs exhibit more errors in path integration from all three

types of noise. The immediate biological implication is that larger brains face a dramatic degra-

dation of CAN performance, accentuating the importance of suppressing error with multi-

bump configurations. However, the simple rule that one neuron always represents a fixed

physical interval does not need to be followed, and larger animals may tolerate greater absolute

errors in path integration because they interact with their environments over larger scales.

Nevertheless, our results highlight the importance of considering network size when studying

the performance of noisy CANs. Under circular mapping, bump diffusion decreases with net-

work size for input and spiking noise, and the magnitude of errors due to connectivity noise is

independent of network size. This implies that head direction networks can benefit from

incorporating more neurons; the observed interactions among such networks across different

mammalian brain regions may act in this manner to suppress noise [60].

The computational advantages of periodic over nonperiodic encodings has been extensively

studied in the context of grid cells [45, 46, 49, 61–64]. Our results extend these findings by

demonstrating that some kinds of periodic encodings can perform better than others. Our

results also contribute to a rich literature on noisy CANs. Previous studies have investigated

additive input noise [35, 43, 54, 65, 66], multiplicative input noise [67], spiking noise [18, 43,

54, 62, 63, 68], and quenched noise due to connectivity or input inhomogeneities [10, 53, 54,

66, 69]. Among these works, the relationship between bump number and noise has only been

considered in the context of multiple-item working memory, in which a single network can be

dynamically loaded with different numbers of bumps [62, 63, 67, 68]. Interestingly, they find

that robustness to noise decreases with bump number, which is opposite to our results (cf. Ref

[63], which reports no dependence between bump number and encoding accuracy under cer-

tain conditions). It appears that CANs designed for path integration with fixed bump number
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and CANs designed for multiple-item working memory with variable bump number differ

crucially in their responses to noise. Further lines of investigation that compare these two clas-

ses would greatly contribute to our general understanding of CANs.

Beyond our concrete results on CAN performance, our work offers a comprehensive theo-

retical framework for studying path-integrating CANs. We derive a formula for the multi-

bump attractor state and a Lyapunov functional that governs its formation. For a ReLU activa-

tion function, we calculate all key dynamical quantities such as velocities and diffusion coeffi-

cients in terms of firing rates. Our formulas yield scaling relationships that facilitate an

intuitive understanding for their dependence on bump number and network size. Much of

our theoretical development does not assume a specific connectivity matrix or nonlinear acti-

vation function, which allows our results to have wide significance. For example, we expect

them to hold for path-integrating networks that contain excitatory synapses. Other theories

have been developed for bump shape [37, 38, 53, 66, 67, 70], path integration velocity [37, 42],

diffusion coefficients [35, 43, 54, 66, 67, 71], and drift velocity [10, 53, 54]. Our work unifies

these studies through a simple framework that features path integration, multiple bumps, and

a noise term that can represent a wide range of sources. It can be easily extended to include

other components of theoretical or biological significance, such as slowly-varying inputs [27,

66, 72], synaptic plasticity [34, 73], neural oscillations [74–76], and higher-dimensional

attractor manifolds [2, 28].

Theoretical model

Architecture

We investigate CAN dynamics through a 1D ring attractor network. This class of network has

been analyzed in previous theoretical works, and at various points, our calculations will paral-

lel those in Refs [37, 38, 43, 53, 54, 66], and [42].

There are two neurons at each position i = 0, . . ., N − 1 with population indexed by α 2 {L,
R} (Fig 1A). For convenient calculation, we unwrap the ring and connect copies end-to-end,

forming a linear network with continuous positions x 2 (−1,1). Unless otherwise specified,

integrals are performed over the entire range. To map back onto the finite-sized ring network,

we enforce our results to have a periodicity λ that divides N. For example, λ = N corresponds

to a single-bump configuration. Integrals would then be performed over [0, N), with positions

outside this range corresponding to their equivalents within this range.

The network obeys the following dynamics for synaptic inputs g:

t
dgaðx; tÞ
dt

þ gaðx; tÞ ¼
X

b

Z

dyWbðx; yÞsbðy; tÞ þ A�a gbðtÞ þ zaðx; tÞ; ð33Þ

where ±L means − and ±R means +, and the opposite for�α. τ is the neural time constant, W is

the synaptic connectivity, and A is the resting input. The nonlinear activation function ϕ con-

verts synaptic inputs to firing rates:

saðx; tÞ ¼ �½gaðx; tÞ�: ð34Þ

Most of our results will apply to general ϕ, but we also consider a ReLU activation function

specifically:

�½g� ¼
g g > 0

0 g � 0:

(

ð35Þ
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In this section, we will explicitly mention when we specifically consider the ReLU case, and

we will always simplify the function away. Thus, if an expression contains the symbol ϕ, then it

holds for general ϕ. In the Results section, formulas for Dinput, Dspike, vdrive, and vconn(θ) as well

as all simulation results invoke Eq 35. We will also use this form in the Bump shape g subsec-

tion of this section. On the other hand, scalings for Dinput, Dspike, vdrive, and vconn(θ) in the

Results section will hold for general ϕ, as long as the connectivity obeys Eq 7 such that g(x/λ)

remains invariant over M and N (Fig 2F). b is the driving input, γ is its coupling strength, and

z is the noise, which can take different forms. γb and z are small compared to the rest of the

right-hand side of Eq 33. For notational convenience, we will often suppress dependence on t.
Wβ(x, y) obeys a standard continuous attractor architecture based on a symmetric and

translation-invariant W:

Wbðx; yÞ ¼Wðx � y�b xÞ where Wð� xÞ ¼WðxÞ: ð36Þ

Each population β deviates from W by a small shift ξ� N in synaptic outputs. Thus, the fol-

lowing approximation holds:
X

b

Wbðx; yÞ � 2Wðx � yÞ: ð37Þ

We will consider the specific form of W (Fig 1B):

WðxÞ ¼
w �

cos px=l � 1

2
jxj < 2l

0 jxj � 2l

8
><

>:
¼

w �
cos kx � 1

2
jxj < 2p=k

0 jxj � 2p=k;

8
><

>:
ð38Þ

where k = π/l. We will explicitly mention when we specifically consider this form; in fact, we

only do so for Eqs 46, 47, 59 and 60, as well as for our simulation results in the Results section.

Otherwise, each expression holds for general W.

Baseline configuration without drive and noise

Linearized dynamics and bump distance λ. First, we consider the case of no drive b = 0

and no noise z = 0. The dynamical equation Eq 33 becomes

t
dgaðxÞ
dt
þ gaðxÞ ¼

X

b

Z

dyWbðx; yÞ�½gbðyÞ� þ A: ð39Þ

Since the right-hand side no longer depends on α, g must be the same for both populations,

and we can use Eq 37 to obtain

t
dgðxÞ
dt
þ gðxÞ ¼ 2

Z

dyWðx � yÞ�½gðyÞ� þ A: ð40Þ

We analyze these dynamics using the Fourier transform F . Our chosen convention, applied

to the function h, is

~hðqÞ ¼ F ½h�ðqÞ ¼
Z

dx e� iqxhðxÞ

hðxÞ ¼ F � 1
½~h�ðxÞ ¼

Z
dq
2p

eiqx~hðqÞ:
ð41Þ
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Fourier modes ~hðqÞ represent sinusoids with wavenumber q and corresponding wavelength

2π/q. Applying this transform to Eq 40, we obtain

t
d~gðqÞ
dt
þ ~gðqÞ ¼ 2 ~WðqÞF � g½ �½ �ðqÞ þ 2pAdðqÞ: ð42Þ

In this subsection, we consider the case of small deviations, such that g(x)� g0 and ϕ[g(x)]�

ϕ[g0] + ϕ0[g0](g(x) − g0). Then, Eq 42 becomes

t
d~gðqÞ
dt
þ ~gðqÞ ¼ 2�

0
½g0�

~WðqÞ~gðqÞ þ 2pA0dðqÞ; ð43Þ

where A0 ¼ Aþ 2 ~Wð0Þð�½g0� � �
0
½g0�g0Þ. The solution to this linearized equation for q 6¼ 0 is

~gðq; tÞ ¼ ~gðq; 0ÞerðqÞt: ð44Þ

Each mode grows exponentially with rate

rðqÞ ¼
2�
0
½g0�

~WðqÞ � 1

t
; ð45Þ

so the fastest-growing component of g is the one that maximizes ~WðqÞ, as stated in Eq 5 of the

Results section. The wavelength 2π/q of that component predicts the bump distance λ.

For the specific W in Eq 38, its Fourier transform is

~WðqÞ ¼ � w
k2sin 2pq

k

k2q � q3
; ð46Þ

so

l ¼
2p

argmin
q

k2 sin 2pq
k

k2q � q3

¼
2l

argmin
c

sin 2pc

c � c
3

� 2:28l:
ð47Þ

λ is proportional to l, as also noted by Refs [16, 18, 41], and [40].

Bump shape g. We call the steady-state synaptic inputs g without drive and noise the base-

line configuration. To calculate its shape, we must account for the nonlinearity of the activa-

tion function ϕ and return to Eq 42. We invoke our particular form of ϕ in Eq 35 to calculate

F ½�½g��ðqÞ. g must be periodic, and its periodicity is the bump distance λ with wavenumber

κ = 2π/λ. Without loss of generality, we take g to have a bump centered at 0. Since W is sym-

metric, g is an even function. We define z as the position where g crosses 0:

gðzÞ ¼ 0: ð48Þ

If g is approximately sinusoidal, then g(x) > 0 wherever nλ − z< x< nλ + z for any integer

n. The ReLU ϕ in Eq 35 implies

�½gðxÞ� ¼ gðxÞFðxÞ where FðxÞ ¼
X1

n¼� 1

Y½x � nlþ z�Y½� ðx � nl � zÞ�: ð49Þ

Θ is the Heaviside step function. The Fourier transform for F is

~FðqÞ ¼ 2
sin qz

q

X1

n¼� 1

e� 2pinq=k ¼ 2
sin qz

q

X1

n¼� 1

d n �
q
k

� �
¼ 2k

sin qz
q

X1

n¼� 1

dðq � nkÞ; ð50Þ
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where the second equality comes from the Fourier series for a Dirac comb. Therefore,

F � g½ �½ �ðqÞ ¼
1

2p

Z

dq0 ~Fðq � q0Þ~gðq0Þ ¼
1

p

X1

n¼� 1

sin nkz
n

~gðq � nkÞ; ð51Þ

so Eq 42 becomes

t
d~gðqÞ
dt
þ ~gðqÞ ¼

2

p
~WðqÞ

X1

n¼� 1

sin nkz
n

~gðq � nkÞ þ 2pAdðqÞ: ð52Þ

This equation describes the full dynamics of g with a ReLU activation function. It contains

couplings between all modes q that are multiples of the wavenumber κ, which corresponds to

the bump distance.

To find the baseline g, we set d~g=dt ¼ 0. We also simplify ~gðqÞ by only considering the low-

est modes that couple to each other: q = 0, ±κ. Due to symmetry, ~Wð� qÞ ¼ ~WðqÞ and

~gð� qÞ ¼ ~gðqÞ. Eq 52 gives

~gð0Þ ¼
2

p
~Wð0Þ kz ~gð0Þ þ 2 sinðkzÞ ~gðkÞ½ � þ 2pAdð0Þ

~gðkÞ ¼
2

p
~WðkÞ sinðkzÞ ~gð0Þ þ kz þ

sin 2kz
2

� �

~gðkÞ
� �

:

ð53Þ

Now we need to impose Eq 48: g(z) = 0. To do so, we note that ~gð0Þ and ~gðkÞ are both pro-

portional to δ(0) according to Eq 53. That means ~gðqÞ has the form

~gðqÞ ¼ G0dðqÞ þ Gdðq � kÞ þ Gdðqþ kÞ; ð54Þ

where G0 and G are the Fourier modes with delta functions separated. This implies

gðxÞ ¼
G0

2p
þ

G
p
cos kx; ð55Þ

and g(z) = 0 implies

G0 ¼ � 2 cosðkzÞG: ð56Þ

Substituting Eqs 54 and 56 into Eq 53, we obtain

G
p
¼ �

pA
2 ~Wð0Þðsin kz � kz cos kzÞ þ p cos kz

kz � cos kz sin kz ¼
p

2 ~WðkÞ
:

ð57Þ

We can solve the second equation of Eq 57 for κz and then substitute it into the first equa-

tion to obtain G. This then gives us g(x), which becomes through Eqs 55 and 56

gðxÞ ¼
G
p
ðcos kx � cos kzÞ: ð58Þ

In particular, let’s use the W defined by Eq 38 with Fourier transform Eq 46. Then,

~Wð0Þ ¼ �
2pw
k

and ~WðkÞ ¼ �
w
k

k2

k2 � k2
sin

2pk

k
: ð59Þ
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Thus,

gðxÞ ¼
G
p
ðcos kx � cos kzÞ

kz � cos kz sin kz ¼ � p

�
2w
k

k2

k2 � k2
sin

2pk

k

� �

G
p
¼ A

�
4w
k

sin kz � kz cos kzð Þ � cos kz
� �

:

ð60Þ

This provides expressions for a and d in Eq 4 of the Results section, where a = G/π and

d = −(G/π) cos κz.

Lyapunov functional and bump distance λ. The dynamical equation in Eq 40 admits a

Lyapunov functional. In analogy to the continuous Hopfield model [77], we can define a Lya-

punov functional in terms of s(x) = ϕ[g(x)]:

L ¼ �
Z Z

dx dyWðx � yÞsðxÞsðyÞ þ
Z

dx
Z sðxÞ

0

dr�� 1
½r� � A

Z

dx sðxÞ: ð61Þ

The nonlinearity ϕ must be invertible in the range (0, s) for any possible firing rate s. For L
to be bounded from below for a network of any size N, we need

1. W(x) to be negative-definite, and

2.
R s

0
dr�� 1

½r� � As to be bounded from below for any possible firing rate s.

We can check that these hold for our particular functions. Eq 38 immediately shows that

the first condition is met. Eq 35 states that ϕ−1[ρ] = ρ when ρ> 0, so
R s

0
dr�� 1

½r� � As ¼ 1

2
s2 � As, which satisfies the second condition.

Now we take the time derivative and use Eq 40:

dL
dt
¼ �

Z

dx 2

Z

dyWðx � yÞsðyÞ � �� 1
½sðxÞ� þ A

� �
dsðxÞ
dt

¼ � t

Z

dx
dgðxÞ
dt

dsðxÞ
dt

¼ � t

Z

dx�0½gðxÞ�
dgðxÞ
dt

� �2

:

ð62Þ

As long as ϕ is a monotonically nondecreasing function, dL/dt� 0. Thus, L is a Lyapunov

functional.

Now we seek to simplify Eq 61. Suppose we are very close to a steady-state solution, so

dg/dt� 0. We substitute Eq 40 into Eq 61 to obtain

L ¼ �
1

2

Z

dx g xð Þ � A½ �sðxÞ þ
Z

dx
Z sðxÞ

0

dr�� 1
½r� � A

Z

dx sðxÞ

¼ �
1

2

Z

dx gðxÞsðxÞ þ
Z

dx
Z sðxÞ

0

dr�� 1
½r� �

A
2

Z

dx sðxÞ:

ð63Þ
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Now we invoke our ReLU ϕ from Eq 35 to obtain

L ¼ �
1

2

Z

dx g xð Þ � s xð Þ½ �sðxÞ �
A
2

Z

dx sðxÞ ¼ �
A
2

Z

dx sðxÞ: ð64Þ

The last equality was obtained by noticing that for any x, either s(x) = 0 or g(x) − s(x) = 0

with our ϕ. Therefore, the stable solution that minimizes L is the one that maximizes the total

firing rate.

We can apply our sinusoidal g in Eq 58 to perform the integral, recalling that κ = 2π/λ:

L ¼ �
NAG
2p2
ðsin kz � kz cos kzÞ; ð65Þ

where N is the network size. So L depends on G and the quantity κz, which we will rewrite as

ψ. We now simplify Eq 65 using Eq 57:

L ¼ �
NA2ðsinc � c coscÞ

4 ~Wð0Þðsinc � c coscÞ � 2p cosc
¼

NA2

� 4 ~Wð0Þ þ 2p

tan c� c

: ð66Þ

Note that since W is negative-definite, ~Wð0Þ ¼
R
dxWðxÞ < 0. Also note that 1/(tan ψ − ψ)

is a monotonically decreasing function of ψ in the range [0, π]. Thus, to minimize L, we need to

minimize ψ. Meanwhile, Eq 57 now reads c � cos c sin c ¼ p=2 ~WðkÞ. The left-hand side is a

monotonically increasing function of ψ in the range [0, π], so to minimize ψ, we need to maxi-

mize ~WðkÞ. Thus, the Lyapunov-stable wavelength λ = 2π/κ is the one that maximizes ~WðkÞ.
This is the same mode that grows fastest for the linearized dynamics in Eq 45.

Bump motion under drive and noise

Dynamics along the attractor manifold. Now that we have determined the baseline con-

figuration g, including the bump shape and bump distance, we investigate its motion under

drive b and noise z. We introduce θ to label the position of the configuration. It can be defined

as the center of mass or the point of maximum activity of one of the bumps. We expand the

full time-dependent configuration with respect to the baseline configuration located at θ:

gaðx; tÞ ¼ gðx � yÞ þ dgaðx; tÞ: ð67Þ

g(x − θ) solves Eq 40 with dg/dt = 0; to facilitate calculations below, we will write the baseline

equation in this form:

gðx � yÞ ¼
X

b

Z

dyWbðx; yÞ�½gðy � yÞ� þ A: ð68Þ

Substituting Eq 67 into Eq 33 and invoking Eq 68, we obtain the following linearized

dynamics for δg:

t
ddgaðx; tÞ

dt
þ dgaðx; tÞ ¼

X

b

Z

dyWbðx; yÞ�
0
½gðy � yÞ�dgbðy; tÞ �a gbðtÞ þ zaðx; tÞ: ð69Þ

We can rewrite this as

t
ddgaðx; tÞ

dt
¼
X

b

Z

dy Kabðx; y; yÞdgbðy; tÞ �a gbðtÞ þ zaðx; tÞ; ð70Þ
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where

Kabðx; y; yÞ ¼Wbðx; yÞ�
0
½gðy � yÞ� � dabdðx � yÞ: ð71Þ

We will often suppress the argument of derivatives of g. If we consider a configuration

located at θ, dg/dx implies dg(x − θ)/dx. We make the argument explicit when necessary.

If we differentiate Eq 68 by θ, we obtain

dg
dx

¼
X

b

Z

dyWbðx; yÞ�
0
½gðy � yÞ�

dg
dy

0 ¼
X

b

Z

dy Kabðx; y; yÞ
dg
dy
;

ð72Þ

which indicates that dg/dx is a right eigenvector of K with eigenvalue 0. To be explicit about

this, we recover the discrete case by converting continuous functions to vectors and matrices:

gi ¼ gði � yÞ; Dgi ¼
dgðx � yÞ

dx

�
�
�
�
x¼i

; Kabij ¼ Kabði; j; yÞ: ð73Þ

If we concatenate matrices and vectors across populations as

J ¼
KLL KLR

KRL KRR

 !

; e ¼
Dg

Dg

 !

; ð74Þ

e is the right null eigenvector of J : 0 ¼
P

jJijej.

Since K is not symmetric, its left and right eigenvectors may be different. To find the left

null eigenvector, we again differentiate Eq 68 with respect to θ, but this time interchanging var-

iables x and y:

dg
dy
¼
X

b

Z

dxWbðy; xÞ�
0
½gðx � yÞ�

dg
dx

� 2

Z

dxWðx � yÞ�0½gðx � yÞ�
dg
dx
:

ð75Þ

The second equality is obtained from Eqs 36 and 37. Replacing the position y by y ±β ξ,

where ξ is the connectivity shift, we get

dgðy � y�b xÞ

dy
� 2

Z

dxWðx � y�b xÞ�
0
½gðx � yÞ�

dgðx � yÞ
dx

; ð76Þ

where we have made the arguments of g explicit. Let’s define shifted versions of the baseline g
for each population α:

�g aðxÞ ¼ gðx�a xÞ: ð77Þ

Since ξ is small,

X

a

�g aðxÞ � 2gðxÞ: ð78Þ

PLOS COMPUTATIONAL BIOLOGY Multiple attractor bumps can enhance robustness to noise

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010547 October 10, 2022 24 / 38

https://doi.org/10.1371/journal.pcbi.1010547


Applying these expressions to Eq 76 and recalling Eq 36,

d�g b
dy

� 2

Z

dxWbðx; yÞ�
0
½gðx � yÞ�

dg
dx

�
X

a

Z

dxWbðx; yÞ�
0
½gðx � yÞ�

d�g a
dx

:

ð79Þ

Finally, we multiply both sides of the equation by ϕ0[g(y − θ)] to obtain

�
0
½gðy � yÞ�

d�g b
dy

�
X

a

Z

dxWbðx; yÞ�
0
½gðy � yÞ��0½gðx � yÞ�

d�g a
dx

0 ¼
X

a

Z

dx Kabðx; y; yÞ�
0
½gðx � yÞ�

d�g a
dx

:

ð82Þ

Thus �
0
½gðx � yÞ� d�g a=dx is the left null eigenvector for Kαβ. Again, to be explicit, the dis-

crete equivalent is

J ¼
KLL KLR

KRL KRR

 !

; f ¼
�
0
½g� � D�gL

�
0
½g� � D�gR

 !

; ð81Þ

where� represents element-wise (Hadamard) multiplication. Then, f is the left null eigenvec-

tor of J : 0 ¼
P

iJijfi.
We now revisit Eq 67 and assume that g changes such that the bumps slowly move along

the attractor manifold:

gaðx; tÞ � gðx � yðtÞÞ;

ddgaðx; tÞ
dt

¼
dgaðx; tÞ
dt

� �
dgðx � yðtÞÞ

dx
dy
dt
:

ð82Þ

Again for simplicity, we will often suppress arguments of derivatives of g and dependence

on t. We return to Eq 70, project it along the left null eigenvector, and apply Eq 82 to obtain

� t
dy
dt

X

a

Z

dx�0½gðx � yÞ�
d�g a
dx

dg
dx
¼ gb

X

a

Z

dx ð�a1Þ � �
0
½gðx � yÞ�

d�g a
dx

þ
X

a

Z

dx�0½gðx � yÞ�
d�g a
dx

zaðxÞ:
ð83Þ

The velocity of bump motion is given by dθ/dt. It is

dy
dt
� �

gb
X

a

Z

dx ð�a1Þ � �
0
½gðx � yÞ�

d�g aðx � yÞ
dx

2t

Z

dx�0½gðx � yÞ�
dgðx � yÞ

dx

� �2

�

X

a

Z

dx�0½gðx � yÞ�
d�g aðx � yÞ

dx
zaðxÞ

2t

Z

dx�0½gðx � yÞ�
dgðx � yÞ

dx

� �2 ;

ð84Þ

where we have made the arguments of g explicit. This equation encapsulates all aspects of

bump motion for our theoretical model. It includes dependence on both drive b and noise z,
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the latter of which is kept in a general form. We will proceed by considering specific cases of

this equation.

Path integration velocity vdrive due to driving input b. The noiseless case of Eq 84 with

zα(x) = 0 yields the bump velocity due to drive b, which is responsible for path integration:

vdrive ¼ �
gb
Z

dx�0½gðx � yÞ�
d�gR
dx
�
d�g L
dx

� �

2t

Z

dx�0½gðx � yÞ�
dg
dx

� �2 : ð85Þ

Note that this expression is independent of the position θ. We can explicitly remove θ by

shifting the dummy variable x! x + θ:

vdrive ¼ �
gb
Z

dx�0½gðxÞ�
dgðxþ xÞ

dx
�
dgðx � xÞ

dx

� �

2t

Z

dx�0½gðxÞ�
dgðxÞ
dx

� �2

� �

gbx
Z

dx�0½gðxÞ�
d2g
dx2

t

Z

dx�0½gðxÞ�
dg
dx

� �2 :

ð86Þ

Now let’s consider the specific ReLU activation function ϕ. Eq 35 implies

�
0
½g� ¼

1 g > 0

0 g � 0;

(

so �
0
½g�2 ¼ �0½g� and �

0
½g� � �½g� ¼ �½g�: ð87Þ

These identities, along with the definition for s (Eq 34), give

�
0
½gðxÞ�

d2g
dx2
¼
d2s
dx2

; �
0
½gðxÞ�

dg
dx

� �2

¼
ds
dx

� �2

; �½gðxÞ�
dg
dx

� �2

¼ sðxÞ
ds
dx

� �2

: ð88Þ

Applying the first two equalities to Eq 86 produces Eq 8 of the Results section.

Now we reintroduce noise z and assume it is independent across neurons and timesteps,

with mean hzi. If we average Eq 84 over z, the numerator of the second term becomes

X

a

Z

dx�0½gðx � yÞ�
d�g aðx � yÞ

dx
hzi ¼ 0: ð89Þ

The integral vanishes because g is even and
P

a
d�g a=dx is odd. Thus,

dy
dt

� �

¼ vdrive; ð90Þ

demonstrating that networks with independent noise still path integrate on average.

Diffusion Dinput due to input noise. Independent noise z produces diffusion, a type of

deviation in bump motion away from the average trajectory. It is quantified by the diffusion

coefficient D:

h½yðtÞ � hyðtÞi�2i ¼ 2Dt: ð91Þ
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In terms of derivatives of θ,

h½yðtÞ � hyðtÞi�2i ¼
Z t

0

Z t

0

dt0 dt00
dy
dt0
�

dy
dt0

� �� �
dy
dt00
�

dy
dt00

� �� �� �

: ð92Þ

Eqs 84 and 90 imply

dy
dt
�

dy
dt

� �

¼ �

X

a

Z

dx�0½gðx � yÞ�
d�g a
dx

zaðxÞ

2t

Z

dx�0½gðx � yÞ�
dg
dx

� �2 : ð93Þ

We then shift the dummy variable x! x + θ(t) and reintroduce explicit dependence on t to

obtain

h½yðtÞ � hyðtÞi�2i ¼
Z t

0

Z t

0

dt0 dt00

X

ab

Z Z

dx dy�0½gðxÞ��0½gðyÞ�
d�g a
dx

d�g b
dy
hza xþ yðt0Þ; t0ð Þzb yþ yðt00Þ; t00ð Þi

4t2

Z

dx�0½gðxÞ�
dg
dx

� �2
" #2

: ð94Þ

One class of independent z is Gaussian noise added to the total synaptic input, which repre-

sents neural fluctuations at short timescales. We assume it is independent across neurons and

timesteps with zero mean and fixed variance σ2:

hzaðx; tÞi ¼ 0; hzaðx; tÞzbðy; t0Þi ¼ s2Dt dðt � t0Þdabdðx � yÞ: ð95Þ

Δt is the simulation timestep, which defines the rate at which the random noise variable is

resampled. Eq 94 then becomes, with the help of Eq 78,

h½yðtÞ � hyðtÞi�2i ¼
Z t

0

dt0
s2Dt

X

a

Z

dx�0½gðxÞ�2
d�g a
dx

� �2

4t2

Z

dx�0½gðxÞ�
dg
dx

� �2
" #2

�

s2Dt
Z

dx�0½gðxÞ�2
dg
dx

� �2

2t2

Z

dx�0½gðxÞ�
dg
dx

� �2
" #2

� t:

ð96Þ

Reconciling this with the definition of the diffusion coefficient D in Eq 91 yields

Dinput ¼

s2Dt
Z

dx�0½gðxÞ�2
dg
dx

� �2

4t2

Z

dx�0½gðxÞ�
dg
dx

� �2
" #2

: ð97Þ

Applying Eq 88 for a ReLU ϕ gives Eq 10 of the Results section.

Diffusion Dspike due to spiking noise. Instead of input noise, we consider independent

noise arising from spiking neurons. In this case, the stochastic firing rate s is no longer the
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deterministic expression in Eq 34. Instead,

saðx; tÞ ¼
caðx; tÞ
Dt

; ð98Þ

where c is the number of spikes emitted in a simulation timestep of length Δt. We model each

cα(x, t) as an independent Poisson-like random variable driven by the deterministic firing rate

ϕ[gα(x, t)] with Fano factor F. It has mean ϕ[gα(x, t)]Δt and variance Fϕ[gα(x, t)]Δt. Therefore,

saðx; tÞ ¼ �½gaðx; tÞ� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�½gaðx; tÞ�

Dt

r

Zaðx; tÞ; ð99Þ

where each ηα(x, t) is an independent random variable with zero mean and unit variance:

hZaðx; tÞi ¼ 0; hZaðx; tÞZbðy; t0Þi ¼ Dt dðt � t0Þdabdðx � yÞ: ð100Þ

As in Eq 95, the simulation timestep Δt defines the rate at which η is resampled. By substi-

tuting Eq 99 into Eq 33, we see that spiking neurons can be described by deterministic firing

rate dynamics with the stochastic noise term

zaðx; tÞ ¼
X

b

Z

dyWbðx; yÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F�½gbðy; tÞ�
Dt

s

Zbðy; tÞ: ð101Þ

Now we calculate the diffusion coefficient produced by this noise. Eq 93 becomes

dy
dt
�

dy
dt

� �

¼ �

X

ab

Z Z

dx dyWbðx; yÞ�
0
½gðx � yÞ�

d�g a
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�½gðy � yÞ�

Dt

r

ZbðyÞ

2t

Z

dx�0½gðx � yÞ�
dg
dx

� �2

¼ �

X

b

Z

dy
d�g b
dy

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F�½gðy � yÞ�

Dt

r

ZbðyÞ

2t

Z

dx�0½gðx � yÞ�
dg
dx

� �2 :

ð102Þ

We recalled Eqs 67 and 79 to obtain these equalities. We then proceed as for input noise to

calculate

h½yðtÞ � hyðtÞi�2i ¼
Z t

0

Z t

0

dt0 dt00

F
Dt

X

ab

Z Z

dx dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�½gðxÞ��½gðyÞ�

p d�g a
dx

d�g b
dy
hZa xþ yðt0Þ; t0ð ÞZb yþ yðt00Þ; t00ð Þi

4t2

Z

dx�0½gðxÞ�
dg
dx

� �2
" #2

; ð103Þ

which yields the diffusion coefficient

Dspike ¼

F
Z

dx�½gðxÞ�
dg
dx

� �2

4t2

Z

dx�0½gðxÞ�
dg
dx

� �2
" #2

: ð104Þ
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After applying Eq 88 for a ReLU ϕ and setting F = 1 for Poisson spiking, we obtain Eq 20 of

the Results section.

Drift velocity vconn(θ) due to quenched connectivity noise. Suppose that we perturb the

symmetric, translation-invariant W by a small component V representing deviations away

from an ideal attractor architecture:

Wbðx; yÞ !Wbðx; yÞ þ Vabðx; yÞ: ð105Þ

By Eq 33, this produces the noise term

zaðx; tÞ ¼
X

b

Z

dy Vabðx; yÞ�½gbðy; tÞ�: ð106Þ

In contrast to input and spiking noise, this noise is correlated across neurons and time, so it

cannot be averaged away as in Eqs 89 and 90. Substituting Eq 106 into Eq 84, we obtain

dy
dt
¼ vdrive þ vconnðyÞ; ð107Þ

where the drift velocity is

vconnðyÞ ¼ �

X

ab

Z Z

dx dy Vabðx; yÞ�
0
½gðx � yÞ�

dgðx � yÞ
dx

�½gðy � yÞ�

2t

Z

dx�0½gðx � yÞ�
dgðx � yÞ

dx

� �2 : ð108Þ

Because V is already small, we ignored ξ in Eq 77 to obtain this expression. We have also

made the dependence on bump position θ explicit to illustrate how it influences vconn(θ). After

applying Eq 88 for a ReLU ϕ, we obtain Eq 24 of the Results section.

We now make scaling arguments for speed difference (Eq 30), speed variability (Eq 31),

and escape drive b0 (Eq 26). To do so, we impose a ReLU ϕ and return to discrete variables to

be explicit:

vconn;y ¼ �

X

ab

X

ij

Vabij � Dsi� y � sj� y

2t
X

i

ðDsi� yÞ
2

: ð109Þ

We need to understand how the numerator scales with M and N. It is a weighted sum of

4N2 independent Gaussian random variables Vαβij and is thus a Gaussian random variable

itself. It has zero mean, but its variance is proportional to N2 �M2/N2. The N2 comes from the

number of terms in the sum and the M2/N2 comes from the scaling of ds/dx (Eq 11). In combi-

nation with the scaling of the denominator, we conclude that vconn;θ is a Gaussian random var-

iable with

E½vconn;y� ¼ 0; Var½vconn;y� /
N2

M2
: ð110Þ

Eq 109 implies that vconn;θ is correlated over θ. The weights for the sum over Vαβij are the

firing rates and their derivatives for a bump centered at θ. If θ is slightly changed, almost the

same entries of V will be summed over with similar weights. The amount of correlation across

θ is determined by the degree of overlap in weights, and therefore, by the width and number of

bumps. Let’s consider the effects of changing N and M on the covariance matrix Cov[vconn;θ,
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vconn;θ0]. A larger N increases the bump width and the correlation length proportionally, so val-

ues of the main diagonal decay proportionally more slowly into the off diagonals. A larger M
redistributes values among the diagonals by decreasing the bump width and adding more

bumps, but it does not change the total amount of correlation. Thus,

X

y;y0

Cov½vconn;y; vconn;y0 � / N2 � Var½vconn;y�: ð111Þ

This allows us to evaluate

Var mean
y

vconn;y

� �

¼ Var
1

N

X

y

vconn;y

" #

¼
1

N2

X

y;y0

Cov½vconn;y; vconn;y0 � /
N2

M2
: ð112Þ

As a sum of zero-mean Gaussian random variables, meanθ vconn;θ is also a zero-mean

Gaussian random variable. That means |meanθ vconn;θ| follows a folded normal distribution,

which obeys

E mean
y

vconn;y

�
�
�

�
�
�

� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
Var mean

y
vconn;y

� �s

/
N
M
: ð113Þ

Combining this with Eqs 12 and 14 produces the scalings for speed difference in Eq 32.

We now study speed variability, which involves the expression

std
y

vconn;y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X

y

v2

conn;y

s

: ð114Þ

Since each vconn;θ is Gaussian, the sum of their squares follows a generalized chi-square dis-

tribution. Its mean is the trace of the covariance matrix Cov[vconn;θ, vconn;θ0], which is equal to

N times the variance. Thus, by Eq 110,

E
1

N

X

y

v2

conn;y

" #

¼
1

N
� N � Var½vconn;y� /

N2

M2
: ð115Þ

We are interested in the square root of the random variable on the left-hand side, and we

anticipate its expected value to scale as the square root of the right-hand side. We can make

this argument precise. Suppose H is a random variable with a probability distribution function

p(h) that scales with a power of the parameter B. We can write

pðhÞ ¼ Bn PðBmhÞ ð116Þ

for exponents n and m, where the rescaled probability distribution function P does not scale

with B. Conservation of total probability implies

Bn

Z

dh PðBmhÞ ¼ BnB� m
Z

dh0 Pðh0Þ ¼ 1: ð117Þ

Thus, m = n. Next, suppose we know that E[H]/ Bo:

E½H� ¼ Bn

Z

dh h PðBnhÞ ¼ B� n
Z

dh0 h0 Pðh0Þ / Bo: ð118Þ
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Thus, n = −o. We can now conclude that E½
ffiffiffiffi
H
p
� /

ffiffiffiffiffiffiffiffiffiffi
E½H�

p
:

E½
ffiffiffiffi
H
p
� ¼ B� o

Z

dh
ffiffiffi
h
p

PðB� ohÞ ¼ Bo=2

Z

dh0
ffiffiffiffi
h0
p

Pðh0Þ / Bo=2: ð119Þ

Applying this result to Eq 115, we obtain

E std
y

vconn;y

� �

¼ E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X

y

v2

conn;y

s" #

/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
1

N

X

y

v2

conn;y

" #v
u
u
t /

N
M
: ð120Þ

Combining this with Eqs 12 and 14 produces the scalings for speed variability in Eq 32.

The escape drive b0 involves the expression maxθ|vconn;θ|. Extreme value statistics for corre-

lated random variables is generally poorly understood. We follow Ref [78] and provide a heu-

ristic argument for its scaling. We can partition vconn;θ across θ into groups that are largely

independent from one another based on its correlation structure. As discussed above, vconn;θ is

a weighted sum of independent Gaussian random variables Vαβij (Eq 109). The weights are

products between the firing rates sj − θ and their derivatives Δsi − θ for a configuration centered

at position θ. If we choose two θ’s such that their bumps do not overlap, the corresponding

vconn;θ’s will sum over different Vαβij’s and will be independent. Thus, λ/z roughly sets the

number of independent components, where λ is the bump distance and z is the bump width.

This ratio does not change with M or N in our networks (Fig 2F), so the maximum function

does not change the scaling of |vconn;θ|:

max
y
jvconn;yj / jvconn;yj: ð121Þ

The scaling of E[|vconn;θ|] can be determined from Var[vconn;θ] through arguments similar

to those made in Eqs 116–119. Suppose we know that Var[H]/ Bo and E[H] = 0. Then,

Var½H� ¼ Bn

Z

dh h2 PðBnhÞ ¼ B� 2n
Z

dh0 ðh0Þ2 Pðh0Þ / Bo: ð122Þ

Thus, n = −o/2. We can now conclude that E½jHj� /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½H�

p
:

E½jHj� ¼ B� o=2

Z

dh jhj PðB� o=2hÞ ¼ Bo=2

Z

dh0 jh0j Pðh0Þ / Bo=2: ð123Þ

Applying this result to Eq 121, we obtain

E max
y
jvconn;yj

� �

/ E jvconn;yj
� �

/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½vconn;y�

q
/

N
M
: ð124Þ

Combining this with Eqs 12, 13 and 26 produces the scalings for the escape drive b0 in

Eq 27.
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Simulation methods

Dynamics and parameter values

To simulate the dynamics in Eq 33, we discretize the network by replacing neural position x
with index i and propagate forward in time with the simple Euler method:

t
gaiðt þ DtÞ � gaiðtÞ

Dt
þ gaiðtÞ ¼

X

bj

WbijsbjðtÞ þ A�a gbðtÞ þ zaiðtÞ: ð125Þ

We use τ = 10 ms. We use Δt = 0.5 ms and A = 1 for all simulations except those with spik-

ing neurons. In the latter case, we use finer timesteps Δt = 0.1 ms and set A = 0.1 ms-1. Synaptic

inputs g and resting inputs A can be dimensionless for rate-based simulations, but they must

have units of rate for spiking simulations. We use γ = 0.1 for rate-based simulations and γ =

0.01 ms-1 for spiking simulations. In all cases, we run the simulation for 1000 timesteps before

recording any data to form the bumps. To achieve the relationship in Eq 13 for circular map-

ping, we rescale γ with network size N and bump number M:

g! g �
N

600
�

3

M
: ð126Þ

The connectivity W takes the form in Eq 38. Unless otherwise specified, we use shift ξ = 2.

To produce M bumps in a network of size N, we turn to Eq 47 and set l = 0.44N/M. Note that

an alternative to Eqs 13 and 126 would be to rescale ξ proportionally with l/ N/M under cir-

cular mapping, since bump velocity is also proportional to ξ (Fig 3C). We use w = 8M/N�
3.5/l. For the case of 2l> N/2, which corresponds to a one-bump network, the tails of the

cosine function extend beyond the network size. Instead of truncating them, we wrap them

around the ring:

WðxÞ !WðxÞ þWðx � NÞ þWðxþ NÞ: ð127Þ

This procedure, along with the scaling of w with N and M, accomplishes Eq 7 and keeps the

total connectivity strength per neuron ∑i Wi constant across all N and M, where Wi is the dis-

crete form of W(x).

To generate the Poisson-like spike counts cαi(t) in Eq 98, we rescale Poisson random vari-

ables:

caiðtÞ ¼ F � CaiðtÞ; CaiðtÞ � Pois½�½gaiðtÞ�Dt=F�: ð128Þ

These counts will be multiples of the Fano factor F. To produce a cαi(t) whose domain is the

natural numbers, one can follow Ref [18], which takes multiple samples of Cαi(t) during each

timestep.

To obtain theoretical values in Figs 3, 5, 7 and 8, we need to substitute the baseline inputs gi
into the appropriate equations. We use noiseless and driveless simulations to generate gi
instead of using Eq 4.

Bump position

We track the position θ of each bump using the firing rate summed across both populations

Si(t) = ∑α ϕ[gαi(t)]. We first compute the circular center of mass of Si(t) with periodicity N/M:

y0 ¼
N

2pM
atan2

X

i

SiðtÞ sinð2piM=NÞ;
X

i

SiðtÞ cosð2piM=NÞ

" #

: ð129Þ
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atan2 is the two-argument arctangent, and we choose its branch cut such that its range is [0,

2π). Thus, θ0 lies between 0 and N/M and represents the bump position averaged periodically

across bumps. To track the position of each bump independently, we then partition the net-

work into segments of length bN/Mc. If N/M is not an integer, we skip one neuron between

some segments to have them distributed as evenly as possible throughout the network. We per-

form a circular shift of Si(t) such that network position θ0 is shifted to the middle of the first

segment N/2M, after rounding both quantities to integers. The purpose of this process is to

approximately center each bump within a segment so that Si(t) drops to 0 before reaching seg-

ment boundaries. We then calculate the center of mass of Si(t) within each segment. After

reversing the circular shift, these centers of masses are taken to be the bump positions.

Path integration velocity and diffusion

To obtain our results in Figs 3 and 5, we run each simulation for T = 5 s. To extract the bump

velocity v produced by a constant drive b, we calculate the mean displacement Θ as a function

of time offset u:

YðuÞ ¼
Dt

T � u

X

t

y t þ uð Þ � y tð Þ½ �: ð130Þ

θ is the bump position. This equation averages over the fiducial starting time t, which ranges

from 0 to T − u − Δt in increments of Δt. We vary u between 0 and T/2 in increments of Δt;
the maximum is T/2 to ensure enough t’s for accurate averaging. We then fit Θ(u) to a line

through the origin to obtain the velocity:

YðuÞ � vu: ð131Þ

We calculate the diffusion coefficient D based on an ensemble of replicate simulations. In

this section, angle brackets will indicate averaging over this ensemble. Following the definition

of D in Eq 92, we calculate each bump’s position relative to the mean motion of the ensemble:

oðtÞ ¼ yðtÞ � hyðtÞi: ð132Þ

We compute squared displacements and then average over fiducial starting times to obtain

a mean squared displacement for each bump as a function of time offset u:

OðuÞ ¼
Dt

T � u

X

t

½oðt þ uÞ � oðtÞ�2: ð133Þ

t and u span the same time ranges as they did for Θ. We average O(u) over the ensemble and

fit it to a line through the origin to obtain the diffusion coefficient:

hOðuÞi � 2Du: ð134Þ

For simulations with M bumps, we arbitrarily assign identity numbers 1, . . ., M to bumps

in each simulation. We perform ensemble averaging over bumps with the same identity num-

bers; that is, we only average over one bump per simulation. This way, we obtain separate val-

ues for each bump in Fig 3E–3H; nevertheless, these values lie on top of each other. In Fig 3B

and 3C, each point represents v averaged across bumps. To calculate the mean velocity hvi in

Fig 3E and 3F, we fit hΘ(u)i to a line through the origin. To estimate standard deviations for

Figs 3E–3H and 5, we create 48 bootstrapped ensembles, each of which contains 48 replicate

simulations sampled with replacement from the original ensemble. We calculate hvi or D for
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each bootstrapped ensemble and record the resulting standard deviation. In Fig 5, each point

represents D and its estimated standard deviation averaged across bumps.

Trapping and position-dependent velocity

For simulations with connectivity noise, we determine the escape drive b0 (Fig 7), the smallest

drive that allows the bumps to travel through the entire network, by a binary search over b. We

perform 8 rounds of search between the limits 0 and 1.28 and another 8 rounds between 0 and

−1.28 to obtain b0 within an accuracy of 0.01. In each round, we run a simulation with the test

b and see whether the bumps travel through the network or get trapped. Traveling through the

network means that every position (rounded to the nearest integer) has been visited by a

bump, and trapping means that the motion of at least one bump slows below a threshold for a

length of time.

To obtain the position-dependent bump velocity v(θ) produced by connectivity noise when

|b|> b0, we run a simulation until the bumps have traveled through the network. At each time-

step, we record the positions of the bumps (binned to the nearest integer) and their instanta-

neous velocities with respect to the previous timestep. We smooth the velocities in time with a

Gaussian kernel of width 10 ms, which is the neural time constant τ. We compute the mean

and standard deviation of these smoothed velocities for each position bin.

Mutual information

For simulations with input noise, we explore the mutual information between encoded coordi-

nate and single-neuron activity (Fig 6). To do so, we must generate data from which we can

compute p(s|u) in Eq 22, for coordinate u 2 U and activity s 2 S. We have chosen one set of

conditions for performing this analysis, which we detail below.

We first choose to represent either a linear or circular coordinate, which we take to be posi-

tion or orientation, respectively. We then choose to represent a narrow or wide coordinate

range umax, which is 20 cm or 200 cm for position and 36˚or 360˚for orientation. We divide

the range into 20 equally spaced coordinates such that U ¼ fumax=20; . . . ; umaxg. We convert

these coordinates to network positions according to the mappings in Fig 4. For each coordi-

nate value u, we initialize 96 replicate simulations at the corresponding network position by

applying additional synaptic input to the desired bump positions during bump formation. We

run the simulations for 5 s, record the final firing rates, and bin them using 6 equally spaced

bins from 0 to the 99th percentile across all neurons. All rates above the 99th percentile are

also added to the 6th bin. These bins define the discrete S, and normalizing the bin counts pro-

duces p(s|u). We marginalize over u to obtain p(s), and p(u) is uniform. We can then use Eq 22

to compute the mutual information.

The 4 local cues in Fig 6F–6H correspond to 4 activity states Scue separate from the 6 activity

bins of the CAN neurons, Sneuron. The joint sample space of a single neuron with cues is thus

S ¼ Sneuron � Scue with 6 × 4 = 24 total states. We bin neural activity across these more

numerous states, using the coordinate value u to determine the cue state value, to again com-

pute p(s|u) and then the mutual information.

We choose to compute mutual information with single-neuron activities binned into 6 dis-

crete states due to computational tractability. A better indication of encoding quality for the

entire network would involve using the joint activity of multiple neurons. However, assuming

the same binning process, that would involve estimating probability distributions over 6n states

for n neurons, which would require exponentially more replicate simulations per coordinate

value than the 96 we use. Alternatively, one could reduce the dimensionality of the network

activity by projecting it onto various attractor configurations, as done by Ref [79].
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Different model parameters

In this section, we revisit many major results for input, spiking, and connectivity noise, but for either a

different activation function φ (Fig A) or for connectivity strengths W that do not scale with bump number

and network size (Fig B). To calculate theoretical predictions for each set of results, we need to substitute the

baseline synaptic inputs g into the appropriate equations. They are obtained by running simulations without

noise and drive. Notably, the theory still demonstrates close agreement with simulation results under these

new conditions.

In Fig A, we use a logistic sigmoid activation function φ to convert synaptic inputs g to firing rates s:

φ[g] =
1

1 + e−g
. (A)

All results with this φ are qualitatively identical to those obtained with a ReLU φ in the Results section

of the main text. To calculate theoretical values, we can no longer use equations from the Results section,

which are simplified for a ReLU φ. To compute Dinput, Dspike, vdrive, and vconn(θ), we use Eqs 97, 104, 86,

and 108 from the Theoretical methods section of the main text instead.

In the Results section of the main text, we assumed that the connectivity strengths W obey Eq 7

to maintain the same scaled bump shape across bump numbers M and network sizes N . In addition to

the theoretical advantages of obtaining simple scaling relationships, this choice can be loosely biologically

motivated. Consider the tuning curves of grid cells, which are thought to function as CANs. Their scaled

shapes are roughly similar across modules [1], which may differ in bump number [2–4], and across mammalian

taxa from rodents to primates [5, 6], whose brains certainly differ in neuron number. This crude observation

supports the choice to maintain a fixed scaled bump shape across M and N . Nonetheless, in Fig B, we do

not assume Eq 7 of the main text and bump shape invariance. Instead, we fix w = 0.04 in Eq 38 of the

main text, which fixes the maximum synaptic strength across all networks. This change produces qualitative

differences in noise robustness only for circular mapping. Here, under circular mapping, networks with fewer

bumps are more robust to all three forms of noise, and larger networks are more robust to connectivity noise.

For the corresponding simulations in the Results section of the main text, no major changes in robustness

were observed.
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Fig A: Main results repeated for networks with a logistic activation function. (a) The scaled bump shape remains
invariant across network sizes and bump numbers, accomplished by rescaling connectivity strengths according to Eq 7
of the main text. Curves for different parameters lie over one another. (b and c) Networks with synaptic input noise.
Bump diffusion follows the same qualitative behavior as in Fig 5A and 5B of the main text. (d and e) Networks with
Poisson spiking noise. Bump diffusion follows the same qualitative behavior as in Fig 5C and 5D of the main text. (f–i)
Networks with connectivity noise. (f and g) Escape drive follows the same qualitative behavior as in Fig 7D and 7E of
the main text. (h and i) Bump speed variability follows the same qualitative behavior as in Fig 8D and 8E of the main
text. The activation function φ takes the form in Eq A. In f–i, we use connectivity noise of magnitude 0.003. In h and i,
we use drive b = 2.5. The rest of the parameters are identical in value to those used in the main text.

Additional information results

Fig C shows additional mutual information analyses in networks with input noise. We choose two new linear

coordinate ranges, and we use large networks of size N = 2000 to explore bump numbers up to M = 32. In

Fig Ca, we use 2000 cm as the range, which is the maximum value according to the linear mapping in Fig 4A

of the main text. Bump ambiguities exist for all networks with bump number M > 1. Nevertheless, mean

single-neuron mutual information remains largely constant across M . Thus, the effects of decreased bump

diffusion and increased bump ambiguity at larger M counteract each other.

In Fig Cb, we compare each network’s encoding of a linear coordinate range that is equivalent to its
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Fig B: Main results repeated for networks without rescaling of connectivity strengths according to Eq 7 of the main
text. (a) The scaled bump shape no longer remains invariant across network sizes and bump numbers. (b and c)
Networks with synaptic input noise. Bump diffusion follows the same qualitative behavior as in Fig 5A and 5B of the
main text, except that here it slightly increases with bump number under circular mapping. (d and e) Networks with
Poisson spiking noise. Bump diffusion follows the same qualitative behavior as in Fig 5C and 5D of the main text,
except that here it slightly increases with bump number under circular mapping. (f–i) Networks with connectivity noise.
(f and g) Escape drive follows the same qualitative behavior as in Fig 7D and 7E of the main text under linear mapping.
It slightly increases with bump number and decreases with network size under circular mapping. (h and i) Bump speed
variability follows the same qualitative behavior as in Fig 8D and 8E of the main text under linear mapping. It slightly
increases with bump number and decreases with network size under circular mapping. The connectivity W still takes
the form in Eq 38 of the main text, except that here we fix w = 0.04 across all bump numbers and network sizes. In h
and i, we use drive b = 1.0. The rest of the parameters are identical in value to those used in the main text.

bump distance λ = N/M . Therefore, there is never bump ambiguity, but mutual information also remains

relatively constant across M . As described in Simulation methods of the main text, mutual information is

computed using 20 coordinate values evenly spaced across each range. At larger M , the spacing between

coordinate values decreases along with the coordinate range. Distinguishing among positions at finer scales

is a more difficult task and cancels the effect of decreased bump diffusion. Thus, noisy networks with more

or fewer bumps are equally capable of encoding linear coordinates at proportionally finer or coarser scales.

In fact, this scaled linear coordinate range is identical to a circular coordinate range of 360◦, so these linear
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Fig C: Mutual information between neural activity and linear coordinates for additional coordinate ranges and bump
numbers M . Networks contain input noise of magnitude σ = 0.5. (a) Full coordinate range of 2000 cm in networks of
size N = 2000. Mutual information remains largely constant across bump number. In the shaded region, the coordinate
range exceeds the bump distance. (b) Scaled coordinate range that remains equivalent to the bump distance N/M
in networks of size N = 2000. Mutual information remains largely constant across bump number. The rest of the
parameters are identical in value to those used in the main text. Points indicate data from 96 replicate simulations at
each coordinate value averaged over neurons and bars indicate bootstrapped standard errors of the mean.

results are equivalent to the circular results in Fig 6D of the main text.

Splitting networks

Suppose we have a network of size N with M bumps. Consider splitting it into n separate networks, each of

size N ′ = N/n with M ′ = M/n bumps. How would the combined readout of these split networks compare

to the intact network in terms of noise robustness? We will address this question for input and spiking noise,

assuming invariance of the scaled synaptic inputs g(x/λ) over M and N (Fig 2F of the main text), which

then permits the scalings for diffusion coefficients and velocities in the main text to hold.

Input noise and spiking noise produce diffusion. Using Eqs 15 and 21 of the main text, the diffusion

coefficient for each split network D′ compared to that of the intact network D is given by

D′ = nD (B)

for both input and spiking noise and both linear and circular mapping. Now let’s consider a simple combined

readout of bump position for the split networks that simply averages over the bump position of each network

µ = 1, . . . , n:

θ̄(t) =
1

n

∑
µ

θµ(t). (C)

For any network, the diffusion coefficient D describes the variance in bump position θ across replicate

simulations. According to Eq 91 of the main text,

Var[θ(t)] = 2Dt, Var[θµ(t)] = 2D′t, Var
[
θ̄(t)

]
= 2D̄t, (D)

where D, D′, and D̄ are diffusion coefficients for the intact network, each split network, and the combined

readout, respectively. Then,

2D̄t = Var
[
θ̄(t)

]
=

Var[θµ(t)]

n
=

2D′t

n
= 2Dt. (E)
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Thus, the diffusion coefficient for the combined readout of the split networks is equal to that of the intact

network.

In the case of connectivity noise, a simple comparison between split and intact networks cannot be made.

The split networks contain fewer noisy synapses in total: 4N2/n compared to the 4N2 entries of the noisy

connectivity matrix Vαβ(x, y) for the intact network. One can analyze the average readout of bump velocity

across the split networks

v̄(t) =
1

n

∑
µ

vµ(t), (F)

but with the discrepancy in the amount of noise and additional assumptions required to connect v(t) with

v(θ), which is the predominant form of v in our formulas, we will not continue further.
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